
Lecture 3 – Holographic 

Universe and inflation 

AdS/CFT and braneworld holography

Holographic cosmology 

k-essence inflation



A braneworld can be located  at the boundary of  a  5-dim 

asymptotically Anti de Sitter space (AdS5). In this case the 

cosmic evolution of the braneworld will be governed by 

matter on the brane in addition to the conformal fluid dual 

to the gravity in the bulk.  

As the stress tensor of the conformal fluid is determined by 

the geometry of the bulk we expect a deviation from the 

standard FRW cosmology on the brane.

Basic idea



AdS/CFT  correspondence is a holographic duality between 

gravity in d+1-dim space-time and quantum CFT on the d-dim 

boundary. Original formulation stems from string theory:
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at z=0

AdS bulk
time

Equivalence of 3+1-dim

N =4 Supersymmetric YM Theory 

and string theory in AdS5S5

Examples of CFT:

Maxwell electrodynamics,

Massless Maxwell-Dirac ED 

Massless 𝜑4 scalar field theory
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AdS/CFT and braneworld holography
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z
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In the second Randall-Sundrum (RS II) model a 3-brane is located  at a

finite distance from the boundary of AdS5 . 

Holographic braneworld is a 3-brane located at the boundary of the

asymptotic AdS5. The cosmology is governed by matter on the brane in 

addition to the boundary CFT



Why AdS?  

Anti de Sitter space is a maximally symmetric solution to Einstein’s 

equations with negative cosmological constant. 

In 4+1 dimensions the symmetry group is  AdS5≡ SO(4,2)

So there is a boundary at 𝑧 = 0. A  correspondence between gravity in 

the bulk and the conformal field theory (CFT) on the boundary of AdS

may be expected because the 3+1 boundary conformal field theory is 

invariant under conformal  transformations: Poincare + dilatations + 

special conformal transformation = conformal group ≡ SO(4,2)

The bulk metric may be represented by (Fefferman-Graham coordinates)  
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It is sometimes convenient to represented the metric in Gaussian normal 

coordinates which we have previously employed for the RSII model 

In these coordinates, the boundary is at 𝑦 = −∞
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Using the solution                      we can define a functional

Consider the matter part of a 5-dim bulk action in asymptotic AdS5 

background

𝑆(5)[Φ] = න𝑑5𝑥 𝐺 L(5)(Φ, 𝐺𝑎𝑏)

The bulk field Ф is completely determined by its field equations 

obtained from the variational principle               

given the boundary value                              and the induced metric        

on the boundary        .  

(5)
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where                            is the on-shell bulk action, i.e., the action in 

which the fields are solutions to the field equations given their 

boundary values.  The on-shell bulk action is still subject to the 

variation of the boundary values.
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AdS/CFT conjecture: The action S[φ,h] can be identified with the generating

functional of a conformal (quantum) field theory on the boundary
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where the boundary fields serve as sources for CFT operators

In this way the CFT correlation functions can be calculated as functional 

derivatives of the on-shell bulk action, e.g.,



yielding a solution              . Using this we  define a functional

Given  induced metric        on the boundary the geometry is 

completely determined by the field equations obtained from the 

variation principle     
𝛿𝑆

𝛿𝐺𝑎𝑏
= 0

𝐺𝑎𝑏[ℎ]

𝑆[ℎ] = 𝑆shell 𝐺𝑎𝑏[ℎ]

where                               is the on-shell bulk action𝑆shell 𝐺𝑎𝑏[ℎ]

ℎ𝜇𝜈

Consider next a bulk action with only gravity in the bulk

𝑆 =
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AdS/CFT conjecture: the action S[h] can be identified with 

the generating functional of a conformal field theory (CFT) 

on the boundary.

The induced metric hμν serves as the source for the 

energy-momentum tensor of the dual CFT so that its 

vacuum expectation value is obtained from the on shell 

classical action 

𝑇𝜇𝜈
CFT =

2

−ℎ

𝛿𝑆

𝛿ℎ𝜇𝜈



The on-shell bulk action is IR divergent and must be regularized and 

renormalized.   The asymptotically AdS metric in the Fefferman-Graham 

form is

(0) 2 (2) 4 (4)g g z g z g   = + + +  
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Explicit expressions for            in terms of arbitrary boundary metric         

can be found in

(2 )ng

where the length scale ℓ  is the AdS curvature radius.

Near z=0 the four-tensor 𝑔𝜇𝜈 can be expanded as

Holographic renormalization

(0)g

𝜇, 𝜈 = 0,1,2,3

(38)(3.1)
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In particular, we will need 𝑔𝜇𝜈
(2)

and 𝑔𝜇𝜈
(4)

where the tensor ෤𝑔𝜇𝜈
(4)

depends on the boundary 

metric 𝑔𝜇𝜈
(0)

and vanishes if this metric is conformally flat, 

such as the FRW metric. In the following we will ignore 

the contribution of ෤𝑔𝜇𝜈
(4)

as we will focus on the FRW  

cosmology on the boundary. 

(3.2)
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So, we regularize the action by placing a brane (an RSII brane) 

near the AdS boundary, i.e., at 𝑧 = 𝜀ℓ, 𝜀 << 1, so that the 

induced metric on the brane is

(0) 2 2 (2)

2

1
( )h g g  


= + +  

The bulk splits in two regions: 0 ≤ 𝑧 ≤ 𝜀ℓ, and 𝜀ℓ ≤ 𝑧 < ∞. 

We can either discard the region 0 ≤ 𝑧 ≤ 𝜀ℓ (one-sided 

regularization) or invoke the Z2 symmetry (as in the original 

RSII model) and identify two regions (two-sided 

regularization). As before, we use one-sided regularization. 

In the RSII model by introducing the boundary in AdS5 at 

z = zbr instead of z = 0, the model is conjectured to be dual to 

a cutoff CFT coupled to gravity, with z = zbr providing the IR

cutoff (corresponding to the UV cutoff of the boundary CFT)



The equations of motion on the brane are obtained by 

demanding that the variation with respect to the induced metric 

hμν of the regularized on shell bulk action (RSII action) 

vanishes, i.e.,

reg[ ] 0S h =

The regularized bulk action is given by

𝑆reg[ℎ] =
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– Gibbons-Hawking boundary term              

– brane action              
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The necessary counter-terms are

S.W. Hawking, T. Hertog, and H.S. Reall, Phys. Rev. D 62 (2000)

Next we renormalize the boundary action. The renormalized 

boundary action is obtained by adding counter-terms and 

taking the limit  ε→0



Now we demand that the variation with respect to the induced 

metric hμν of the regularized on shell bulk action (RSII action) 

vanishes, i.e.,
reg[ ] 0S h =

This may be expressed as matter on 

the brane
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The variation of the scheme-dependent  S3 combined 

with Sren yields

Then, the variation of the total action Sreg [h] yields Einstein’s 

equations on the boundary

𝑇𝜇𝜈 = ቚ
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This is an explicit realization of the AdS/CFT correspondence:  

the vacuum expectation value of a boundary CFT operator is obtained  in 

terms of geometrical quantities of the bulk.

The vacuum expectation value of the conformal stress tensor is 

calculated by de Haro, Solodukhin, and  Skenderis : 

where               are the coefficients given by (3.2) and (3.3) that appear in 

the expansion (3.1) of the bulk metric

(2 )ng

Using  (3.2) and (3.3)  for a conformally flat boundary metric, we find 



In this way we obtain the holographic Einstein field equations

In this expression the term 𝑡𝜇𝜈 gives no contribution if the 

boundary space-time represented by the metric 𝑔𝜇𝜈
(0)

is conformally flat. So, in cosmological applications, we can 

ignore this term since the FRW metric is conformally flat.

(41)

modification

(3.4)



Holographic cosmology
We now seek a cosmological solution to the holographic Einstein 

equations such that the induced metric at the boundary has the FRW 

form

2 (0) 2 2 2( ) kds g dx dx dt a t d  = = − 

From now on we assume spatial flatness, i.e., we put           . The 

nonvanishing components of the 3+1 dim. Ricci tensor are as usual 

𝑅00 = −3( ሶ𝐻 + 𝐻2)

0 =

𝑅𝑖𝑗 = 𝑎2( ሶ𝐻 + 3𝐻2)𝛿𝑖𝑗

Applying these to the 00 component of the modified Einstein 

equations (3.4) at the boundary we obtain the holographic 

Friedmann equation (Exercise No 12)

𝑅 = −6( ሶ𝐻 + 2𝐻2)And the Ricci scalar



The second Friedmann equation can be derived from  the continuity 

equation (1.9), ሶ𝜌 + 3𝐻(𝜌 + 𝑝) = 0, combined with (3.5)  (Exercise No 13)

𝐻2 −
ℓ2

4
𝐻4 =

8𝜋𝐺N
3

𝜌

quadratic 

deviation

ሶ𝐻 1 −
ℓ2

2
𝐻2 = −4𝜋𝐺N(𝑝 + 𝜌)

where 𝜌 = 𝑇00, 𝑝 = −𝑇𝑖
𝑖

quadratic 

deviation

E. Kiritsis, JCAP 0510 (2005);  Apostolopoulos et al, Phys. Rev. Lett. 102,  (2009);

N.B., Phys. Rev. D 93 (2016), arXiv:1511.07323
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The holographic cosmology has  interesting properties. Solving the first 

Friedmann equation as a quadratic equation for H2 we find

𝐻2 =
2

ℓ2
(1 ± 1 − 8𝜋ℓ2𝐺N𝜌/3)

Demanding that this equation reduces to the standard Friedmann

equation in the low energy limit, i.e., in the limit when

ℓ2𝐺N𝜌 ≪ 1

it follows that we must discard  the + sign solution. Then, it follows 

that the physical range of the Hubble rate is between 0 and             

starting from its  maximal value                       at an arbitrary initial 

time t0. At that time, which may be chosen to be zero, the density 

and cosmological scale are both finite so the Big-Bang singularity is 

avoided!

2 /

max 2 /H =

We will sometimes use the dimensionless Hubble rate

ℎ = ℓ𝐻



One postulates a field, dubbed the inflaton, usually a self-interacting 

scalar which evolves  towards the minimum of a slow roll potential. In 

conjunction with Friedmann equation one solves the field equations 

from the beginning to the end of inflation. During inflation a slow roll 

regime is assumed, i.e., a very slow change of the Hubble rate so the 

Universe expands  almost as a de Sitter spacetime with a large 

cosmological constant.

Quantum fluctuations of the inflaton field generate initial density 

perturbations of order                     at the time of decoupling 
510  −=

300 000 years (z 1000)t  
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Inflation



The main problems of the standard 

cosmology solved by inflation

• Horizon problem  – homogeneity and isotropy of the 

CMB radiation

• Flatness problem – fine tuning of the initial conditions

• Large scale structure problem – the origin of

initial density perturbations that serve as seeds of the 

observed structure today 

• Monopole problem – absence of topological defects:   

monopoles, cosmic strings, domain walls



Inflation

During inflation the Universe evolution  can be viewed as two 

interlinked processes: 1) Backround evolution and 2) Evolution of the 

cosmological perturbations

1) Backround evolution assumes isotropic and homogenous 

spacetime with a spatially flat FRW metric and time evolution 

described by the Friedmann  equations as in the standard 

cosmology

2) Cosmological perturbations are small disturbances of the metric 

on top of the background. These disturbances, classified as scalar 

and tensor perturbations, are initiated by quantum fluctuations of 

the inflaton. The perturbations are calculated at linear order and 

quantized according to canonical quantum field theory. The 

spectrum of metric perturbations generated during inflation  is 

model dependent and can be confronted with the spectrum 

inferred from the CMB 



and we employ the holographic  Friedmann equations  

2
2 4 8

=
4 3

G
H H


−

2
21 = 4 ( )

2
H H G p 
 
− + 

 

Now we assume that  the background in the holographic braneworld

is a spatially flat  FRW  universe with line element

2 2 2 2 2 2( )ds g dx dx dt a t dr r d    = = − +  

The field equation may be presented in the form of either the Euler-

Lagrange equation or the Hamilton equations, as discussed in Lecture I

We  also demand that these equations reduce to the standard 

Friedmann  equation in the low energy limit. These equations will be 

solved in conjunction with the field equation for the inflaton field. We will 

assume the inflaton Lagrangian as a general k-essence field Lagrangian

ℒ = ℒ 𝑋, 𝜃 with the corresponding Hamiltonian ℋ. The pressure and 

energy density are identified with the Lagrangian and Hamiltonian

𝑝 ≡ ℒ, 𝜌 ≡ ℋ = 2𝑋ℒ𝑋 − ℒ

Background

(3.8)

(3.9)



Another important quantity is the so called number of e-folds defined as 

where  the subscripts i and  f denote the beginning and  the end of 

inflation. Typically                         is sufficient to solve the flatness and 

horizon problems  

The most important quantities that characterize inflation are the  slow-

roll inflation parameters εj defined recursively    

𝜀1 ≡ −
ሶ𝐻

𝐻2
𝜀2 ≡

ሶ𝜀1
𝐻𝜀1

1 / ( )j j jH  + 

starting from 𝜀0 ≡ 𝐻∗/𝐻, where 𝐻∗ is the Hubble rate at some 

chosen time. The slow roll regime is characterized by 𝜀𝑖 ≪ 1.
The first two slow roll parameters are given by

f

i

t

t
N Hdt 

During inflation 𝜀1,2 < 1 and inflation ends once either ε1 or ε2 exceeds 1.

𝑁 ≃ 50 − 60



Cosmological perturbations

To confront our model with observation we need to calculate the power 

spectra of scalar and tensor cosmological perturbations      , and      , 

respectively, evaluated at the horizon, i.e., for a wave-number satisfying  

q=aH. We follow the formalism of J. Garriga and V. F. Mukhanov, Phys. 

Lett. B 458, (1999) adjusted to account for the modfied Friedmann 

equations. The perturbations are calculated at linear order and quantized 

according to canonical quantum field theory. 

SP TP

Perturbations of the metric

The symmetric tensor  ℎ𝑖𝑗 corresponds to primordial gravitational waves 

generated during inflation. 

Scalar perturbations Tensor perturbations

Assuming a spatially flat background one can choose a gauge so that



Scalar perturbations

Cosider first the scalar perturbations only. Then, the perturbed line 

element in the Newtonian gauge

Using this, we can easily calculate the perturbations of the Ricci 

tensor and Ricci scalar. The perturbed components of the Ricci 

tensor at linear order are



and the perturbed Ricci scalar

Then,  the relevant components of the perturbed Einstein equations at 

linear order are

From the last equation, it follows that we can choose Φ = Ψ and 

work in the so-called longitudinal gauge with only one scalar, e.g., Φ

(for 𝑖 ≠ 𝑗)

(3.10)

(3.11)



The perturbations of the stress tensor are induced by the fluctuations 

of the inflaton field 𝛿𝜃 and metric perturbations Φ. Following standard 

Newtonian gauge conventions, the coordinates are chosen such that 

𝑢𝑖 is a first-order perturbative quantity (𝑢𝑖 = 𝒪(δ𝑢𝑖)). Hence, up to 

the first perturbative order, we find

𝛿𝑇0
0 = 𝛿𝜌 𝛿𝑇𝑖

0 = (𝑝 + 𝜌)𝛿𝑢𝑖

yielding

where 𝑐s is the speed of sound (see Lecture I, eq. (14a))

𝑐s
2 = ቤ

𝜕𝑝

𝜕𝜌
𝜃

=
𝑝𝑋
𝜌𝑋

=
𝑝 + 𝜌

2𝑋𝜌𝑋

(3.12)

(3.13)

(3.14)



In the slow roll regime the sound speed deviates slightly from unity and 

may be expressed in terms of slow-roll parameters. First, by making 

use of the definition 𝜀1 = − Τሶ𝐻 𝐻2 and the modified Friedmann 

equations (3.8)  with (3.9), we can express the variable X in the slow 

roll regime as

where we introduce the dimensionless Hubble rate ℎ = ℓ𝐻 . Then 

from (3.14) we find

(3.15)

The standard k-essence expression will be recovered if we set 

ℎ = 0 in (3.15)



Using (3.12) and (3.13), the modified Einstein equations 

(3.10) and (3.11) can be written in the form

Here  we have defined 

where ℎ = ℓ𝐻 .

(3.16)

(3.17)



Now we introduce new functions 

The gauge invariant quantity ζ represents spatial curvature 

perturbations on uniform density (constant-𝜃) hypersurfaces. 

Substituting this into (3.16) and (3.17) and using the 2nd

Friedmann eq. (3.8) we find

where

Here we use the definition of the slow roll parameter 𝜀1 ≡ −
ሶ𝐻

𝐻2

(3.18)

(3.19)



By introducing a new variable 𝑣 = 𝑧ζ , it is straightforward 

to show from equations (3.18) and (3.19) that 𝑣 satisfies a 

second order differential equation

where the primes denote derivatives with respect to the 

conformal time 𝜏 = 𝑑𝑡/𝑎׬ . In the slow-roll regime one can 

use the relation

which follows from the definition of 𝜀1expressed in terms of 

the conformal time 𝜏 . At linear order in 𝜀𝑖 we find 

where

(3.20)



By making use of the Fourier transformation

where 𝑞 is a comoving wavenumber, we  obtain the mode-function equation

There is a characteristic scale given by the acoustic horizon size related to 

the  Hubble scale during inflation, 𝑐𝑠/𝐻. There will be modes 𝑣𝑞 with physical 

wavelengths 𝑎/𝑞 much smaller than this scale, or 𝑐𝑠𝑞 ≫ 𝑎𝐻 , and modes 

with wavelengths much larger than the acoustic horizon, or  𝑐𝑠𝑞 ≪ 𝑎𝐻.         

In these two asymptotic regimes, the solutions can be written as

𝑣𝑞 =
1

2𝑐𝑠𝑞
𝑒−𝑖𝑐𝑠𝑞𝜏 𝑐𝑠𝑞 ≫ 𝑎𝐻

𝑣𝑞 = 𝐶𝑧 𝑐𝑠𝑞 ≪ 𝑎𝐻

for

for

(3.21)

(3.22)



Since 𝑣 = 𝑧ζ , the perturbation modes ζ𝑞 are frozen for wavelength larger 

than the acoustic horizon scale. The crossover regime 𝑞 ≅ 𝑎𝐻 is called   

the horizon crossing.

The solution to (3.21) which for large 𝜏 agrees with the asymptotic  

functions (3.22) is 

where 𝐻ν
(1)

is the Hankel function of the first kind of rank ν. In the limit 

of the de Sitter background 𝐻 = const , all 𝜀𝑖 vanish so ν = 3/2 , in 

which case the solution is



Quantum origin of perturbations

As we have mentioned earlier, initial density perturbations are induced  

by quantum fluctuations of the inflaton field 𝜃. To quantize the 

perturbations Φ and 𝛿𝜃 we start from the action

For the scalar field 𝑣. The variation of this action obviously yields 

Eq. (3.20) as the equation of motion for 𝑣. Applying the

standard canonical quantization  the field 𝑣𝑞 is promoted to an 

operator

where the operators ො𝑎𝑞 and ො𝑎𝑞
†

satisfy the canonical commutation relations



Then, the power spectrum of the field ζ𝑞 = 𝑣𝑞/𝑧 is obtained from 

the two-point correlation function

The dimensionless spectral density

characterizes the primordial scalar fluctuations, precisely as in the standard 

k-essence inflation. The difference with respect to the standard expression 

is in the modified dependence on 𝜀1 of  the speed of sound (3.15) that 

appears in the definition of 𝑧



Tensor perturbations

are related to the production of gravitational waves during inflation. 

The metric perturbation are defined as

Owing to the diffeomorphism invariance, the symmetric tensor ℎ𝑖𝑗 can be 

made traceless, i.e., ℎ𝑖
𝑖 = 0, and transverse, i.e., ∇𝑖ℎ𝑖𝑗 = 0.

In the absence of anisotropic stress, the gravitational waves are decoupled 

from matter and the relevant Einstein equations at linear order become

To solve this one uses the standard Fourier decomposition

where the polarization tensor 𝑒𝑖𝑗
𝑠 𝑞 satisfies 𝑞𝑖𝑒𝑖𝑗

𝑠 𝑞 = 0, and   

𝑒𝑖𝑗
𝑠 𝑞 𝑒𝑖𝑗

𝑡 𝑞 = 2𝛿𝑠𝑡,  with two polarizations 𝑠 = +,× .



We now introduce a canonically normalized variable                                

where the dependence on s is suppressed but we have to bear in 

mind to sum over two polarizations in the final expression. We 

obtain the mode equation

Tensor perturbations

𝜈2 = 9/4 + 3𝜀1

Then, the properly normalized solution can be expressed in terms of 

the Hankel functions

where



The dimensionless spectral density which characterizes the primordial 

tensor fluctuations is then given by 

with no deviation from the standard expression

The quantization proceeds in a similar way as in the scalar case and the 

power spectrum of the field  obtained from the two-point correlation function



Next, we evaluate the spectral densities at the horizon crossing, i.e., 

for a wave-number satisfying 𝑞 = 𝑎𝐻. Following the standard 

procedure we make use of the expansion of the Hankel function for 

𝑐𝑠𝑞𝜏 ≪ 1

where the conformal time  τ < 0 and 𝑞 is the comoving wave number.  

At the lowest order in 𝜀1 and 𝜀2 we find

where 𝐶 = 𝛾 − 2 + ln 2 = −0.73 and 𝛾 is the Euler constant, so we 

recover the standard expressions. However, it should be stressed again 

that the relation between the sound speed and slow roll parameters 𝜀𝑖
deviates from the standard relation, as shown in Eq. (3.15).



Scalar spectral index and tensor to scalar ratio

To confront a particular inflation model with CMB observations it is 

convenient to  use the  scalar spectral index and tensor to scalar ratio 

defined as

where 𝒫S and 𝒫T are evaluated at the horizon crossing with 𝑞 = 𝑎𝐻
Keeping the terms up to the quadratic order in 𝜀𝑖 we obtain



Example: tachyon as an inflaton

ℒ = −ℓ−4𝑒−𝜔𝜃/ℓ 1 − 𝑋
0 < 𝜔 < 0.25
60 < 𝑁 < 90
0 < ℎin

2 < 2

Plot obtained courtesy of Milan Milosevic
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1( / ) XV −

= − −L

Example: tachyon as an inflaton
The existence of tachyons in the perturbative spectrum of string theory, 

both open and closed, indicates that the perturbative vacuum is 

unstable and that there exists a true vacuum towards which a

tachyon field  tends. The basics of this process is captured by  an 

effective field theory model with a Lagrangian of the Dirac-Born-Infeld

(DBI) form

and  ℓ is an arbitrary length scale introduced to make the potential V

dimensionless . The  potential V is a positive function of  θ with a 

unique local maximum at θ = 0 and a global minimum at θ = ∞ at 

which V vanishes.

A. Sen, JHEP 9910, 008 (1999) [hep-th/9909062].

, ,X g 

  =where



Holographic cosmology appears also in other contexts. In  particular it 

can be derived in a modified gravity theory of the form  

Modified Gauss-Bonnet gravity

If in addition  one requires that the second Friedmann equation is linear 

in ሶ𝐻, - the requirement which cannot be fulfilled in a simple f(R) modified 

gravity including the Starobinski model - then f can be expressed as a 

function of only one variable f = f(J) where

( )
1/2

21
6

12
J R R= − + − G

C. Gao, Phys. Rev. D  86 (2012) 

𝑆 = න𝑑4𝑥 −𝑔
1

16𝜋𝐺N
−𝑅 + 𝑓(𝑅,G) + Lmatt

where                                                       is the Gauss-Bonnet invariant2 4R R R R R 

 = − +G



In a cosmological context with spatially flat metric one finds                      , 

the function f becomes a function of H, and the first  Friedmann equation 

takes the form

/J a a H= 

𝐻2 +
1

6
𝑓(𝐻) −

1

6
𝐻
𝑑𝑓

𝑑𝐻
=
8𝜋𝐺N
3

𝜌

The left-hand  side is  a function of H only and  takes the  holographic 

form  if 
2 41

( )
2

f H H=

Hence, the holographic cosmology is reproduced in the modified 

Gauss-Bonnet gravity of the form

𝑆 = න𝑑4𝑥 −𝑔
1

16𝜋𝐺N
−𝑅 −

ℓ2

288
𝑅2 − 6G − 𝑅

2

+ Lmatt



The tachyon model belongs to a general class of models called 

k-essence  with noncanonical dependence on the kinetic term.

Tachyon model and other k-essence type of models have been 

widely exploited as model for dark energy, unified DE/DM 

models, and models for inflation.

Our model is based on a holographic braneworld scenario with an 

effective tachyon field on a D3-brane located at the holographic 

boundary of  ADS5. In this  model we naturally identify ℓ as the 

curvature radius of AdS5 . 

As we have discussed previously in Lecture I, the covariant Hamiltonian 

corresponding to L is  

H = ℓ−8𝑉2 + 𝜋𝜃
2

where 𝜋𝜃 is the variable conjugate to 𝑋 , i.e., 

𝜋𝜃 =
𝜕L

𝜕 𝑋



In the following we will examine a simple exponential potential      

where ω is a free dimensionless parameter. We will also consider the 

initial value hi
2 as a free parameter ranging between 0 and 2.

Tachyon inflation is based upon the slow evolution of the field θ

The slow-roll conditions 𝜀1,2 ≪ 1 are met  if

ሶ𝜃2 ≪ 1, | ሷ𝜃| ≪ 3𝐻 ሶ𝜃.

ℎ2 ≡ 𝐻2ℓ2 ≃ 2(1 − 1 − 𝜅2𝑉/3),

2 2= 8 /G 

Then, during the slow-roll regime  we find 

where 

/=V e −

and the evolution is constraint to the  physical range of the Hubble rate 

20 2h 



Another important quantity is the so called number of e-folds defined as 

where  the subscripts i and  f denote the beginning and  the end of 

inflation. Typically                         is sufficient to solve the flatness and 

horizon problems  

2 2 2

1
1 2 12 2 2 2 2

1

(4 ) 2
= , = 2 1

12 (2 ) (2 )(4 )

H h h

H h h H h h

 
  



 −
 −  − 

− − − 

The slow-roll parameters can be analytically calculated in the 

slow roll approximation. The firs two are given by

f

i

t

t
N Hdt 

During inflation 𝜀1,2 < 1 and inflation ends once either ε1 or ε2 exceeds 1.

Near the end of inflation ℎ2 ≃ 𝜅2𝑉/3 ≪ 1 and 𝜀2 ≃ 2𝜀1 . 

𝜀1,2 < 1

𝑁 ≃ 50 − 60



2 2 2 2

i i

2

12
= 1 1 ln 2 ln 1 1

3 2 2 3

h h
N

 



   
− − + + − − + −          

The number of e-folds  can also be calculated explicitly yielding an 

expression that relates our free parameters hi and ω to N

From the field equations we find an approximate equation 

ሶ𝜃 ≃
𝜔

3ℎ
,

which can be easily integrated yielding the time as a function of H

in the slow roll regime 

i
i2

i

3 (2 )(2 )
= 2( ) ln

(2 )(2 )

h h
t h h

h h

 − +
− + 

+ − 

h H

Hence, for a fixed chosen N we have only one free parameter

where



/ℓ

Slow roll parameters ε1 (dashed red line) and ε2 (blue line) 

versus time  for fixed N=60 and  ω2=0.027 corresponding 

to the initial hi
2=0.6 

/ℓ
Slow roll analytical Exact numerical



Scalar perturbations

For scalar perturbations we introduce the perturbed line element in 

the longitudinal gauge

Then, the Einstein equations at linear order take the form

where we have introduced functions 

New terms

The quantity ζ is gauge invariant and measures the spatial curvature of 

comoving (or constant-θ) hyper-surfaces. 



In momentum space  the relevant solution is expressed as 

is the conformal time  and Hν
(1) is the Hankel function of the 

first kind with  



vq is related to  ζ as  vq=zζ with 

Applying the standard canonical quantization we  obtain the  

spectral density of the primordial scalar fluctuations



. 

We find  at the lowest order in ε1 , and ε2 

2
2

s 2

8 4
1

12 3
s

p h
c

h

 −
 = −
 −

2 2 2

S 1 22 2 2

s 1

1 2 1
4 (2 ) 2

h Ch
C C

h c h


 

 

  
= − + + −  

− −  
P

= 2 ln 2 0.72C − + + −

Deviations from the 

standard tachyon 

inflation

( )
2 2

T 12

2
1 2 1

h
C





= − +  P



( )

2
2

1 2 12

2 2 2
2

s 1 2 122 2 2

2

1 2 2 32

4 2
= 16(1 ) 1

12 3

2 2 8
1 = 2 2

2 2 3 4

1
8 6

3 4

h
r h C

h

h h h
n

h h h

h
C C

h

  

  

   

 −
− + − 

− 

 
   − − + − − + − 

 − −  −
 

 
− + + − 

− 

Deviations from the 

standard tachyon 

inflation

This can be confronted with Planck 2018 observations  

We now calculate the observational quantities such as the tensor-to-

scalar ratio r and the scalar spectral index ns defined by   

T S
s

S

ln
= , =

ln

d
r n

d q

P P

P

where        and       are evaluated at the horizon, i.e., for a wave-number 

satisfying  q=aH.  Keeping the terms up to the 2nd order in ε1, ε2, and ε3, 

one finds

SP TP



r versus  ns with observational constraints are from Planck 2018. The 

dots represent theoretical predictions obtained numerically for randomly 

chosen N ranging between 60 and 90 and  hi
2 between  0 to 2. The 

parameter ω is also varying in view of the functional dependence 

N=N(hi, ω). The black lines represent the analytical results in the slow 

roll approximation. 

N=60

N=90



Conclusions and outlook
❑ The slow-roll equations of the tachyon inflation with 

exponentially attenuating potential on the holographic brane

show substantial deviations  from those of the standard 

tachyon inflation with the same potential

❑ The ns - r relation depends on the initial value of the Hubble 

rate and on the assumed value of the number of e-folds  N

and show a reasonable agreement  with the Planck 2018 

data for N > 60.

❑ The presented  results are encouraging. What remains to be 

done is to solve the exact equations numerically  for various 

other potentials that have been exploited in the literature. 

❑We have carried out the analysis of non-Gaussianity. Our 

estimate shows no essential deviations with respect to 

standard tachyon models
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Anti de Sitter space is dual to a conformal field theory at 

its boundary (AdS/CFT correspondence) 

AdS is a maximally symmetric solution to Einstein’s 

equations with negative cosmological constant.  In 4+1 

dimensions the symmetry group is AdS5≡ SO(4,2)

The 3+1 boundary conformal field theory is invariant under 

conformal  transformations: Poincare + dilatations + special 

conformal transformation = conformal group ≡ SO(4,2)

Basic idea

Braneworld cosmology is based on the scenario in which 

matter is confined on a brane in a higher dimensional 

bulk with only gravity allowed to propagate in the bulk. 

The brane can be placed, e.g.,  at the boundary of           

a  5-dim asymptotically Anti de Sitter space (AdS5)



Using the solution                    , we can define a functional

Consider a 5-dim bulk action in asymptotic AdS5 background

5

(5) (5)[ ] , )( abS d x G G = −  L

Given the boundary value                              and the induced metric        

on the boundary        , the bulk field Ф and the metric Gab are 

completely determined by  field equations obtained from the 

variational principle               

.  

(5)
0

S


=



[ , ]h = 

 shell[ , ] [ , ]S h S h = 

where                            is the on-shell bulk action, i.e., the action in 

which the fields are solutions of the equations of motion given their 

boundary values.  The on-shell bulk action is still subject to the 

variation of the boundary values.

 shell [ , ]S h

h

( ) ( 0, )x z x   =

𝛿𝑆(5)

𝛿𝐺𝑎𝑏
= 0



 4 CFT[ , ] ln exp ( )) ( ( )) ( )(S h d d x h x O x x      − − −   L

AdS/CFT conjecture:  S[φ,h] can be identified with the generating

functional of a conformal field theory on the boundary

( )CFT L – conformal field theory Lagrangian

( )O  – operators of dimension Δ

2

( ( )) ( ( )) ( ( )) ( ( ))
( ) ( )

S
O x O y O x O y

x y


   

 
= −

where the boundary fields serve as sources for CFT operators

The induced metric hμν serves as the source for the stress tensor of the 

dual CFT so that its vacuum expectation value is obtained as

In this way the CFT correlation functions can be calculated as functional 

derivatives of the on-shell bulk action, e.g.,

2
CFT1

2

S
T

hh





=

−



One usually imposes the RS fine tuning condition 

0 2

5 N

3 3

8 8G G


 

 
=  =

The Planck mass scale is determined by the curvature of 

the five-dimensional space-time 

2 /

N 5 50

1

2

ye dy
G G G



− 
= =  =

1   one-sided

2   two-sided

which eliminates the 4-dim cosmological constant.



Bound on the AdS5 curvature radius ℓ:

The classical 3+1 dim gravity is altered on the RSII brane

For               the Newtonian potential of an isolated source 

on the brane is given by

r

2

N

2

2
( ) 1

3

G M
r

r r

 
 = + 

 

J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000) 

Table top tests of Long et al find no deviation of Newton’s 

potential and place the limit

1 120.1mm    or     > 10 GeV− −



First, we represent the  bulk metric in AdS-Schwarzschild 

static coordinates  ( , , , , )r   

)sin(
)(sin

= 222
2

22 



 dddd ++

Holographic cosmology
We now seek a cosmological solution to the holographic 

Einstein equations such that the induced metric at the 

boundary has the FRW form

2 (0) 2 2 2( ) kds g dx dx dt a t d  = = − 

2
2 2 2 2

(5) ( )
( )

dr
ds f r d r d

f r
= − − 

where
2 2

2 2
( )

r
f r

r
 = + −

5 bh

2

8

3

G M



=



Holographic type cosmologies appear also in other contexts:  

1. The saddle point of the spatially closed mini superspace partition 

function dominated by matter fields conformally coupled to gravity      
A. O. Barvinsky, C. Deffayet and A. Y. Kamenshchik, JCAP  0805,  (2008) 

arXiv:0801.2063                                                                                                              

2. A modified Friedmann equation with a quartic term ~H4 derived from 

the generalized uncertainty principle and the first low of 

thermodynamics applied to the apparent horizon entropy.
J. E. Lidsey, Phys. Rev. D  88 (2013)   arXiv:0911.3286 

3. The quartic term  as a quantum correction to the Friedmann equation 

using thermodynamic arguments at the apparent horizon [37]                                                                   
S. Viaggiu, Mod. Phys. Lett.  A, 31 (2016) arXiv:1511.06511 

4. Modified  Gauss-Bonnet gravity
G. Cognola et al Phys. Rev. D 73 (2006),  C. Gao, Phys. Rev. D  86 (2012); 



One postulates a field, dubbed the inflaton, usually a self-interacting 

scalar that evolves  towards the minimum of a slow roll potential. In 

conjunction with Friedman equation one solves the field equations 

from the beginning to the end of inflation. During inflation a slow roll 

regime is assumed, i.e., a very slow change of the Hubble rate so the 

Universe expands  almost as a de Sitter spacetime with a large 

cosmological constant.

Quantum fluctuations of the inflaton field generate initial density 

perturbations of order                     at the time of decoupling 
510  −=

300 000 years (z 1000)t  

V

φ

Inflation



where                     is the Hubble rate at the boundary and μ is the 

dimensionless parameter related to the bulk BH mass

Solving Einstein’s equations in the bulk one finds

2
2 4

2 2 2

2 4

1
1 ,

4 4

z z
a H

a a

   
= − + +  

  
A ,

a
=
A

N

/H a a

Comparing the exact solution with the expansion

(0) 2 (2) 4 (4)g g z g z g   = + + +  

we can extract         and        . Then, using the de Haro et al. expression 

for TCFT we obtain 

(2)g

(4)g

P.S. Apostolopoulos, G. Siopsis, and N. Tetradis, Phys. Rev. Lett. 102,  (2009)

P. Brax and  R. Peschanski, Acta Phys. Polon. B 41 (2010)  



2 2
2 2 2 2 2 2 2

(5) 2 2
( ) ( , ) ( , ) kds g dx dx dz t z dt t z d dz

z z

 


 = − = −  − N A

Starting from AdS-Schwarzschild static coordinates  

and making the coordinate transformation                                 

the bulk line element will take a general form

Imposing the boundary conditions at z=0:

( ,0) 1, ( ,0) ( )t t a t= =N A

( , ), ( , )t z r r t z = =

the induced metric at the boundary takes the FRW form

2 2 2 2( ) kds dt a t d= − 



CFT CFT (0)1

4
T t T g

   = +

The second term due to the conformal anomaly and is given by

The first term is a traceless tensor with non-zero components
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CFT 2
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3
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a
T H

G a a









 
= + 

 

Hence, apart from the conformal anomaly, the CFT dual to the time 

dependent asymptotically AdS5 metric  is a conformal fluid with the 

equation of state                       

where                 

CFT CFT 3p =

CFT 00 CFT

i

it p t = = −

N.B., Phys. Rev. D 93 (2016), arXiv:1511.07323



One of the popular models of inflaton is the tachyon. Our aim is to study 

tachyon inflation in the framework of holographic cosmology . The model 

is based on a holographic braneworld scenario with an effective tachyon 

field on the D3-brane located at the holographic bound of  ADS  bulk.  A 

tachyon Lagrangian of the form

can be derived in the context of a dynamical brane moving in a  4+1 

background with a general warp

2 2

(5) 2

1
= ( )

( )
ds g dx dx dz

z

  


−

, ,

4
1( / ) gV 

 
 −

= − −L

4 4( / ) / ( )V   =

The field θ is identified with the 5-th coordinate z and the potential is related

to the warp 

Tachyon inflation

N.B., S. Domazet and G. Djordjevic,  Class. Quant. Grav.  34, (2017) arXiv:1704.01072. 


