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Braneworld universe

Braneworld universe is based on the scenario in which 

matter is confined on a brane moving in the higher 

dimensional bulk with only gravity allowed to propagate 

in the bulk.

N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 (1998)

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. 

B 436 (1998)

L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 3370 (RS I),

Phys. Rev. Lett. 83 (1999) 4690 (RS II)



In a d-dimensional spacetime manifold (bulk), a 

hypersurface is a p-dimensional (p<d) submanifold 

(subspace) which can be either spacelike, timelike, or 

null. 

In particular, we will consider submanifolds of dimension 

p=d-1. For example, in the braneworld scenario, the 

Universe is  a 3+1-dimensional timelike hypersurface in a 

4+1-dimensional  bulk 

𝑋𝑎 – coordinates in the bulk 

a,b=0,1,2,3, …, d-1

𝑥𝜇 – coordinates on the 

hypersurface        μ,ν=1,2,3, …, p

Hypersurfaces



Defining equations

A d-dimensional hypersurface Σ in a d+1-dimensional 

bulk with metric          can be selected either by

1) putting a restriction on the coordinates

so that  dΦ=0 along the hypersurface,  or by

2) parametric equations of the form

𝛷(𝑋𝑎) = const

𝑋𝑎 = 𝑋𝑎(𝑥𝜇)

Xa

xi

x0𝑋𝑎 – coordinates in the bulk 

a,b=0,1,2,3, …, d

𝑥𝜇 – coordinates on the 

hypersurface      μ,ν=0,1,2,3, …, d-1

abG



Normal vector

Because 𝑑𝛷 ≡ 𝛷,𝑎𝑑𝑋
𝑎 = 0, the vector 𝛷,𝑎 is orthogonal  to 

the displacements 𝑑𝑋𝑎 along Σ. Depending on the sign of 

the norm of the vector 𝛷,𝑎 we have 

𝐺𝑎𝑏𝛷,𝑎𝛷,𝑏 
>0  - spacelike hypersurface

<0  - timelike hypersurface

=0  - null  hypersurface

If                        , 𝛷,𝑎 can be normalized𝐺𝑎𝑏𝛷,𝑎𝛷,𝑏 ≠ 0

𝑛𝑎 =
𝛷,𝑎

|𝐺𝑎𝑏𝛷,𝑎𝛷,𝑏|so that


1 for a spacelike hypersurface (na is a timelike vector)

-1  for a timelike hypersurface (na is a spacelike vector) 

𝑛𝑎 =



Induced metric

𝑑𝑠Σ
2 = 𝐺𝑎𝑏𝑑𝑋

𝑎𝑑𝑋𝑏 = 𝐺𝑎𝑏
𝜕𝑋𝑎

𝜕𝑥𝜇
𝜕𝑋𝑏

𝜕𝑥𝜈
𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑔𝜇𝜈

in𝑑 𝑑𝑥𝜇𝑑𝑥𝜈

For the displacements 𝑑𝑋𝑎 on Σ we have 

The 4-tensor                                                                                                     

is called the induced metric, or first fundamental form, of 

the hypersurface Σ. This equation can be regarded as a 

coordinate transformation

𝐺′𝑐𝑑 = 𝐺𝑎𝑏
𝜕𝑋𝑎

𝜕𝑥𝑐
𝜕𝑋𝑏

𝜕𝑥𝑑

from {Xa}  to {xc} coordinate frames and we restrict the tensor 

G’ab to the coordinates a,b=0,1,2, …,d-1 which we denote by 

Greek letters μ,ν. From now on we restrict attention to d=4.

𝑔𝜇𝜈
in𝑑 = 𝐺𝑎𝑏

𝜕𝑋𝑎

𝜕𝑥𝜇
𝜕𝑋𝑏

𝜕𝑥𝜈



Projector

is the projection tensor onto Σ, where na is a unit vector normal to Σ with  

𝜖 = 1 (-1) for a timelike (spacelike) vector na . Clearly 𝑛𝑎ℎ𝑎𝑏 = 0.

One can show that the 4-tensor ℎ𝜇𝜈, 𝜇, 𝜈 = 0,1,2,3, is also an induced 

metric on Σ which is related to 𝑔𝜇𝜈
in𝑑 by a coordinate transformation.

To show this, make a coordinate transformation 𝑋𝑎 = 𝑋𝑎 ෨𝑋𝑏 such 

that the normal vector in the new coordinates takes the form ෤𝑛𝑎 = 𝛿𝑦
𝑎 , 

where the coordinate y is such that the defining equation for the 

hypersurface Σ is 𝑦 = const. In this coordinate frame the projector onto 

Σ is 

The tensor 

ℎ𝑎𝑏 = 𝐺𝑎𝑏 − 𝜖𝑛𝑎𝑛𝑏 𝑎, 𝑏 = 0,1,2,3,4

෨ℎ𝜇𝜈 = ෨𝐺𝜇𝜈 = ෤𝑔𝜇𝜈
ind

෨𝐺𝜇𝜈 = 𝐺𝑎𝑏
𝜕𝑋𝑎

𝜕 ෨𝑋𝜇
𝜕𝑋𝑏

𝜕 ෨𝑋𝜈

where the  bulk metric components in new coordinates are obtained 

as usual



Extrinsic curvature

restricted to the coordinates μ,ν=0,1,2,3, i.e., the 4-

tensor Kμν , is called the extrinsic curvature, or second 

fundamental form, of the hypersurface Σ. In special 

coordinates, with 𝑛𝑎 = 𝛿𝑦
𝑎 , we find 

;

c d

ab a b d cK h h n=

The projection of the covariant derivative of nd

𝐾 ≡ 𝐺𝑎𝑏𝐾𝑎𝑏 = ℎ𝑎𝑏𝐾𝑎𝑏 = 𝑛;𝑎
𝑎

The trace K of 𝐾𝑎𝑏

𝐾𝜇𝜈 = 𝑛𝜇;𝜈 = −Γ𝜇𝜈
𝑎 𝑛𝑎



Einstein-Hilbert action

In 4+1 dimensional spacetime with boundary at a 4 dim. 

hypersurface Σ , the vacuum Einstein equations can be 

derived from the action

𝑆 =
1

8𝜋𝐺5
න𝑑5𝑥 −𝐺 −

𝑅 5

2
− Λ5 + 𝑆GH

The Gibbons-Hawking boundary term is  

𝑆GH =
𝜖

8𝜋𝐺5
Σ𝑑׬

4𝑥 −det ℎ (𝐾 − 𝐾0)

where 𝜖 = ±1 for a timelike (spacelike) hypersurfaceΣ and K0

is the trace of the extrinsic curvature of Σ embedded in flat 

spacetime. The GH term is necessary to cancel a generally 

nonvanishing contribution of the boundary in the variation of 

the action δS. 



Then, the variation principle δS=0 yields the Einstein 

equations in vacuum

and junction conditions

where 𝑇𝛽
𝛼 is the energy momentum tensor for matter 

localized  on the hypersurface Σ and [[f]] denotes the 

discontinuity of a function f(x) across Σ, i.e.,

𝑓 𝑥 = lim
𝜀→0

(𝑓 𝑥 + 𝜀 − 𝑓 𝑥 − 𝜀 )

𝐾𝛽
𝛼 − 𝐾𝛿𝛽

𝛼 = 8π𝐺5𝑇𝛽
𝛼

The junction conditions prescribe the appropriate boundary 

conditions across a singular hypersurface Σ supported by a 

localized energy momentum tensor 𝑇𝛽
𝛼 . 



Strings and (mem)branes

STRING is a 1+1-dimdimensional object moving in the 

d+1 dimensional bulk

p-BRANE is a p+1-dim. object that generalizes the 

concept of  membrane (2-brane) or string (1-brane) 

string

2-brane

bulk



2 2

part 1S ds d d x  = − = − = − −  

𝐺𝑎𝑏 – metric in the bulk

𝑥𝑎 – coordinates in the bulk; 

𝜏 – synchronous time coordinate (𝑑𝑠2 = 𝑑𝜏2 + 𝐺𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗)

where

Relativistic particle action

2 , , , 0,...,
a b

a b

ab ab

x x
ds G dx dx G a b d

 

 
= = =

 

PARTICLE is a 0+1-dimdimensional object the dynamics 

of which in d+1-dimensional bulk is described by the  

relativistic pointlike-particle action

2 , 1,...,
i j

ij

x x
x G i j d

 

 
= =

 
𝜏 ≡ 𝑥0

,



ind

string det( )S T d d g = − −

𝑇 – string tension

𝑋𝑎 – coordinates in the bulk 

𝑠0 ≡ 𝜏 – timelike coordinate on the string sheet

𝑠1 ≡ 𝜎 – spacelike coordinate on the string sheet 

where 𝑔𝛼𝛽
ind is the induced metric 

String action

𝑔𝛼𝛽
ind = 𝐺𝑎𝑏

𝜕𝑋𝑎

𝜕𝑠𝛼
𝜕𝑋𝑏

𝜕𝑠𝛽
𝛼, 𝛽 = 0,1

The dynamics of  a STRING in d+1-dimensional bulk is 

described by the Nambu-Goto action (generalization of 

the relativistic particle action)

𝑋𝑎

s1

s0

string

string shit



𝑋𝑎 – coordinates in the bulk 

a,b=0,1,2,3,4

𝑥𝜇 – coordinates on the brane

μ,ν=0,1,2,3 

𝜎 – brane tension

a b

ab

X X
h G

x x
  

 
=

 
– induced metric

4

br = detS d x h− −

The dynamics of  a p-BRANE in d+1-dimensional bulk is 

described by the Nambu-Goto action as a generalization 

of the string action. Nambu-Goto action for a 3-brane 

embedded in a 4+1-dimensional space-time (bulk)

Brane  action

Xa

xi

x0
z



Consider a 3-brane moving in the 5-d  bulk spacetime 

with metric 
𝑑𝑠(5)

2 = 𝜓2(𝑦) 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 − 𝑑𝑦2

Xa

xi

x0
y

Example: dynamical brane as a tachyon

𝑋𝑎 = 𝑥𝜇 , 𝑦



The points on the brane can be are parameterized as                                   

The 5-th coordinate Y is treated as a dynamical field that depends on xμ. 

From the brane action 

𝑋𝑎 = 𝑥𝜇, 𝑌 𝑥

using the induced metric

𝑆br = −𝜎න𝑑4𝑥 −det ℎ𝜇𝜈

ℎ𝜇𝜈 = 𝐺𝑎𝑏𝑋,𝜇
𝑎𝑋,ν

𝑏 = 𝜓2(𝑌)𝑔𝜇𝜈 − 𝑌,𝜇𝑌,𝜈 (a)

one finds

( )
1/2

4 4 2

br , ,= ( ) 1S d x g Y g Y Y

    −− − − (b)

Exercise No 7: 

(i)Prove the following relation 

for a general metric gμν , unit timelike vector uμ , and α2 < 1

2 2det( ) = (1 )detg u u g    − −

(ii) Use (c) to derive (b) from (a) 

Hint: use a comoving reference frame.

(c)



Changing  Y to a new field                               we obtain 

the effective brane action

This action is of the Born-Infeld type and describes the

tachyon condensate

𝑆br = −න𝑑4𝑥 −𝑔𝑉(𝜃) 1 − 𝑔𝜇𝜈𝜃,𝜇𝜃,𝜈

𝜃 = න𝑑𝑌/𝜓(𝑌)

𝑉(𝜃) = 𝜎𝜓4(𝑌 𝜃 )

Where we have defined

Exercise No 8: Show that                  in the AdS5 background 

metric, i.e., for 𝜓 = 𝑒−𝑦/ℓ

4( )V   −



Randall-Sundrum model

Randall-Sundrum proposed two scenarios with a 

braneworld embedded in a 5-dim asymptotically 

Anti deSitter space (AdS5)

L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 3370 (RS I)

L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 4690 (RS II)



Anti de Sitter space AdS5 is an empty 4+1 dimensional 

space-time with negative cosmological constant. The 

Einsten field equations in 4+1 dimensions

Λ5 = −
6

ℓ2

can be easily solved. The cosmological constant 

is related to the AdS5 curvature radius ℓ

(2.1)



Depending on assumed symmetry of AdS5 the solutions to the 

Einstein equations can be represented in various coordinate 

frames:

Flat Fefferman-Graham coordinates

𝑑𝑠(5)
2 =

ℓ2

𝑧2
(𝜂𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 − 𝑑𝑧2)

/yz e=

𝑑𝑠(5)
2 = 𝐺𝑎𝑏𝑑𝑥

𝑎𝑑𝑥𝑏 = 𝑒−2𝑦/ℓ𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 − 𝑑𝑦2

Gaussian normal coordinates



Schwarzschild  coordinates (static, spherically symmetric)

2
2 2 2 2

(5) ( )
( )

dr
ds f r dt r d

f r
= − − 

2 2

2 2
( )

r
f r

r
 = + −

2
2 2 2sin

d d d

 



 = + 

5 bh

2

8

3

G M



=

 = 0   open flat

1   open hyperbolic−


1   closed spherical+

Hence, there is a black hole of mass  𝑀bh at the origin.    

The metric (2.2) is called the AdS Schwarzschild black hole.

where

where

(2.2)

(2.3)



1/ 0.1mmnV 

Long et al, Nature  421 (2003).

RS brane-world does not rely on compactification to localize gravity at 

the brane, but on the curvature of the bulk (“warped compactification”). 

The negative cosmological constant Λ(5) acts to “squeeze” the 

gravitational field closer to the brane. One can see this  in Gaussian 

normal coordinates on the brane at y = 0, for which the AdS5 metric 

takes the form

RS model was proposed as an alternative to the compactification of 

extra dimensions. If extra dimensions were large that would yield 

unobserved modification of Newton’s gravitational law.  Experimental 

bound on the volume of n extra dimensions

warp factor

2 2 2

(5)

a b ky

abds G dX dX e dx dx dy 

−= = −



RS I was proposed as a solution to the hierarchy 

problem, in particular between the Planck scale MPl ~ 

1019 GeV and the electroweak scale MEW ~ 103 GeV

RS I is a 5-dim. universe with AdS5 geometry containing 

two 4-dim. branes with opposite brane tensions 

separated in the 5th dimension.

The observer is placed on the negative tension brane

and the separation is such that the strength of gravity on 

observer’s brane is equal to the observed 4-dim. 

Newtonian gravity.

First Randall-Sundrum model (RS I)

L. Randall and R. Sundrum,  Phys. Rev. Lett. 83 (1999) 3370 (RS I)



x

Observers reside on the negative tension brane at  y=l

𝑦 = 𝑑

0 
0 

The coordinate position y=d of the negative tension 

brane serves as a compactification radius so that the 

effective compactification scale is 𝜇c = 1/𝑑

𝑦 = 0



The conventional approach to the hierarchy problem is to  assume n 

compact extra dimensions with volume Vn . If  their size is large enough 

compared to the Planck scale, i.e., if 

such a scenario may explain the large mass hierarchy between the 

electroweak scale MEW and the fundamental scale M of 4+n gravity. In 

the simplest case, when the 4+n dim. spacetime is a product of a 4-dim. 

spacetime with an n-dim. compact space, one finds 

𝑀Pl
2 = 𝑀2+𝑛𝑉𝑛 ∼ 𝑀2+𝑛/𝜇c

𝑛

𝜇c ∼ 1/𝑉𝑛
1/𝑛

≪ 𝑀Pl

In this way the fundamental 4+n scale M could be of the order of MEW  

if the compactification scale satisfies

𝜇c/𝑀EW ∼ (𝑀EW/𝑀Pl)
2/𝑛

Unfortunately, this introduces a new hierarchy μc << MEW



Another problem is that there exist a lower limit on the fundamental 

scale M determined by null results in table-top experiments to test 

for deviations from Newton’s law in 4 dimensions, U ~1/ r. These 

experiments currently probe sub-millimeter scales, so that

𝑉1/𝑛 ≤ 0.1𝑚𝑚 ∼
1

10−15TeV

Stronger bounds for brane-worlds with compact flat extra dimensions 

can be derived from null results in particle accelerators and in high-

energy astrophysics

Long et al, Nature  421 (2003).

M. Cavagli`a, “Black Hole and Brane Production in TeV Gravity: A Review” 

Int. J. Mod. Phys.  A 18 (2003).

S. Hannestad and G.Raffelt, “Stringent Neutron-Star Limits on Large Extra Dimensions” 

Phys. Rev. Lett. 88 (2002).

55 10 TeV    for n=1

3TeV           for n=2
M

 
  
 



In contrast to usual compactification scenarios, the RS 

brane-worlds do not rely on compactification of extra 

dimensions to localize gravity, but on the curvature of the 

bulk (“warped compactification”). What prevents gravity 

from ‘leaking’ into the extra dimension at low energies is a 

negative bulk cosmological constant

Λ5 acts to “squeeze” the gravitational field closer to the brane. 

One can see this  in Gaussian normal coordinates Xa = (xμ,y)  

on the brane at y = 0, for which the AdS5 metric takes the form

Λ5 = −
6

ℓ2
= −6𝑘2

ℓ - curvature radius of AdS5 corresponding to the scale k=1/ℓ

2 2 2

(5)

a b ky

abds G dX dX e dx dx dy 

−= = −

Warp factor



The Planck scale is related to  the fundamental scale as

𝑀Pl
2 = 2𝑀3න

0

𝑑

𝑒−2𝑘𝑦 𝑑𝑦 =
𝑀3

𝑘
1 − 𝑒−2𝑘𝑑

So that MPl depends only weakly on d in the limit of large kd.

However, any mass parameter m0 on observer’s brane in 

the fundamental 5-dim. theory will correspond to the 

physical mass
𝑚 = 𝑒−𝑘𝑑𝑚0

If kd is of order 10 – 15, this mechanism produces TeV

physical mass scales from fundamental mass parameters not 

far from the Planck scale 1019 GeV. In this way we do not 

require large hierarchies among the fundamental parameters 

m0, k, M, μc=1/d



x

0y = 𝑦 = 𝑑
5( )d x

y →

0 

The observers reside on the positive tension brane at  y=0 and the 

negative tension brane is pushed off to infinity in the fifth dimension

2 2 2

(5)

a b ky

abds G dX dX e dx dx dy 

−= = −

As before, the 5-dim bulk is ADS5 with line element

Second Randall-Sundrum model (RS II)



“Sidedness”

In the original RSII model one assumes the Z2 symmetry

so the region                   is identied with                      with the observer brane

at the fixed point z = zbr. The braneworld is sitting between two patches of 

AdS5, one on either side, and is therefore dubbed “two-sided”. In contrast, in 

the “one-sided” RSII model the region                    is simply cut off. 

For simplicity, from now on we will restrict attention to the “one-sided” RSII

model. We can place the brane at 𝑧br = ℓ , which corresponds to 𝑦 = 0, so 

in the one-sided regularization we discard the region 𝑦 < 0 .   

br0 z z 

brz z z

brz z  

br0 z z 

or br bry y y y−  −



RS model is a 4+1-dim. universe with AdS5 geometry containing two

3-branes with opposite brane tensions separated in the 5th dimension. 

The bulk action is given by

bulk GH br1 br2S S S S S= + + +

The Gibbons-Hawking boundary term is given by an integral over the

brane hypersurface Σ

𝑆bulk =
1

8𝜋𝐺5
න𝑑5𝑥 det𝐺 −

𝑅(5)

2
− Λ5

𝑆GH =
1

8𝜋𝐺5
න

Σ

𝑑4𝑥 −det ℎ 𝐾

where Λ5 is the negative bulk cosmological constant related to 

the AdS curvature radius as

Derivation of the RSII model
See Appendix of N.B., Phys. Rev. D 93, 

066010 (2016)  arXiv:1511.07323

Λ5 = −
6

ℓ2



The quantity K is the trace of the extrinsic curvature tensor Kab

which we have defined as

;

c d

ab a b d cK h h n=

where na is a unit vector normal to the brane pointing towards 

increasing z, hab is the induced metric

, 0,1,2,3,4ab ab a bh G n n a b= + =

and h=det hμν is its determinant, μ,ν=0,1,2,3  

The brane action for each brane is given by the Nambu-Goto

action
4

br = detS d x h− −

4 4

br 0 matt|yS d x h d x h=

 

= − − + −  L

Observers reside on the positive tension brane at y=0. The 

observer total action (including matter) is



The Einstein field equations are the bulk field equations

The  junction conditions on the brane are

where the energy momentum tensor Tμ
ν= diag (ρ, -p,-p,-p)

describes matter on the brane and [[f]] denotes the discontinuity of a 

function f(z) across the brane, i.e.,

To derive the RSII model solution, it is convenient to use the Gaussian 

normal coordinates xa = (xμ , y) with the fifth coordinate y related to the 

Fefferman-Graham coordinate z by 𝑧 = ℓ𝑒𝑦/ℓ .

Without loss of generality, we may put observer’s brane at ybr = 0. 

Then, for the one-sided regularization, one may use

(2.4)

(2.5)

(2.6)



We start with a simple ansatz for the line element

where we assume that ψ(∞)=0 and ψ(0)=1. Then one finds the 

relevant components of the Ricci tensor

and the Ricci scallar

where the prime ′ denotes a derivative with respect to y . Using this, 

the action may be brought to the form

(2.7)

(2.8)

(2.9)

(2.10)



The extrinsic curvature is easily calculated using the definition  and the 

unit normal vector n = (0; 0; 0; 0; 1). The relevant components

The fifth coordinate  may be integrated out if  ψ → 0 sufficiently fast as 

we approach  y = ∞

The functional form of ψ is found by solving the Einstein equations 

(2.4) in the bulk. Using the components of the Ricci tensor (2.8) and  

Ricci scalar (2.9) we obtain

Combining (2.12) and (2.13)  we find (Exercise No 9)

where ℓ = −6/Λ5
/ye −=

(2.11)

(2.12)

(2.13)



With this solution, the metric (2.7) is AdS5 in Gaussian normal 

coordinates and Equation (2.13) reduces to the four-dimensional 

Einstein equation in empty space
1

0
2

R Rg − =

This equation should follow from the variation of the action (2.10) 

with Lmatt = 0 after integrating out the fifth coordinate. For this to 

happen it is necessary that the last three terms in square brackets 

in (2.10) are canceled by the boundary term and the brane action 

without matter. Using (2.11) one finds that the integral of the 

second term  is  canceled by the Gibbons-Hawking term. Then, the 

integration over y fom 0 to ∞ yields

𝑆bulk + 𝑆GH = න𝑑4𝑥 −𝑔 −
ℓ

32𝜋𝐺5
𝑅 +

3

8𝜋ℓ𝐺5

This term contributes to the cosmological constant and can 

be cancelled by the contribution of the brane action

(2.14)



This is the so-called RSII fine-tuning condition which assures  

vanishing of the cosmological constant on the brane. A slight departure 

from the exact equality 𝜎 = 𝜎0 could, in principle, accommodate the 

required empirical value of the cosmological constant.

𝑆br|𝑦=0 + 𝑆br|𝑦=𝑑 = −𝜎න𝑑4𝑥 −𝑔 − 𝜎𝑑න𝑑
4𝑥 −𝑔𝑒−4𝑘𝑑

The total brane contribution (excluding matter) is

This contribution can cancel the last term in (2.14) in the limit 𝑑 → ∞
provided 

For the two branes at y=0 and y=l we find 

𝑔𝜇𝜈
ind|𝑦=0 = 𝑔𝜇𝜈 𝑔𝜇𝜈

ind|𝑦=𝑑 = 𝑒−2𝑘𝑑𝑔𝜇𝜈

𝜎 = 𝜎0 ≡
3

8𝜋𝐺5ℓ
(2.15)



In this way, after integrating out the fifth dimension, the total effective 

four-dimensional action assumes the form of the standard Einstein-

Hilbert action without cosmological constant and without matter

where 𝐺N is the Newton constant defined by

1

𝐺N
=

1

𝐺5
න

0

∞

𝑒−2𝑘𝑦 𝑑𝑦 =
1

2𝑘𝐺5

This can be written as  

𝑀Pl
2 = 𝑀3න

0

∞

𝑒−2𝑘𝑦 𝑑𝑦 =
𝑀3

2𝑘

Where 𝑀Pl = 𝐺N
−1/2

and 𝑀 ≡ 𝐺5
−1/3

is the 5-dim fundamental scale. In 

this way, the inverse curvature k serves as the compactification scale 

and hence the model provides an alternative to compactification. 



Exercise No 10: Derive the RSII fine-tuning condition (2.15) from 

the junction conditions 

It may be shown that the fine tuning condition (2.15) follows 

directly from the junction conditions (2.6) 

2 2 2

(5)

yds e dx dx dy 

−= −

for a brane without matter at y=0 and the metric

N.B., PRD 93, 066010 (2016) , arXiv:1511.07323

Hint:  use Eq. (2.11)



y = − y →

RSII Cosmology – Dynamical Brane

Cosmology on the brane is obtained by allowing the brane to 

move in the bulk. Equivalently, the brane is kept fixed at y=0 

while making the metric in the bulk time dependent.

0y =



Consider a time dependent brane hypersurface Σ defined by

( ) 0r a t− =

in AdS-Schwarzschild background. The normal to Σ is  

Using the normalization                        one finds the nonvanishing 

components

where 

1G n n

  = −

Simple derivation of the RSII braneworld cosmology

J. Soda, Lect. Notes Phys. 828, 235 (2011)  arXiv:1001.1011 

See also Appendix in N.B., PRD 93, 066010 (2016) , arXiv:1511.07323

(2.16)



Then, the induced line element on the brane is

The junction conditions on the brane with matter may be written as 

2 2 2 2 2

ind ( ) ( ) kds n t dt a t d= − 

where 

The -component gives 

Exercise No 11: Derive  the      -component of 

the junction condition 



2
2 ( )

( )
( )

tan f a
f a


= −

2
2 2 2sin

d d d

 



 = + 



This may be written as 

Hubble expansion rate on the brane

Substituting for f the expression (2.16) we obtain

Employing the RSII fine  tuning condition  (2.15)

we find the effective Friedmann equation

where 

𝜎 = 𝜎0 ≡
3

8𝜋𝐺5ℓ
=

3

4𝜋𝐺Nℓ
2



2

2 2N N
RSII 2 4

8 4

3 3

G G
H

a a

   
 

 
+ = + + 

 

dark radiation

due to a black hole in the bulk – should not 

exceed 10% of the total radiation content in 

the epoch of BB nucleosynthesis

Quadratic deviation from 

the standard FRW.

Decays  rapidly as          in 

the radiation epoch

8~ a−

RSII cosmology is thus subject to astrophysical tests

(2.17)



Thank you



AdS/CFT  correspondence is a holographic duality between 

gravity in d+1-dim space-time and quantum CFT on the d-dim 

boundary. Original formulation stems from string theory:

Conformal 

Boundary 

at z=0

AdS bulk
time

Equivalence of 3+1-dim

N =4 Supersymmetric YM Theory 

and string theory in AdS5S5

Examples of CFT:

quantum electrodynamics, 

Yang Mills gauge theory, 

massless scalar field theory,

massless spin ½ field theory

J. Maldacena, Adv. Theor. Math. Phys. 2 (1998)

AdS/CFT and Braneworld Holography



Why AdS?  

Anti de Sitter space is a maximally symmetric solution to Einstein’s 

equations with negative cosmological constant. 

In 4+1 dimensions the symmetry group is AdS5≡ SO(4,2)

So there is a boundary at z=0. A  correspondence between gravity in 

the bulk and the conformal field theory (CFT) on the boundary of AdS 

may be expected because the 3+1 boundary conformal field theory is 

invariant under conformal  transformations: Poincare + dilatations + 

special conformal transformation = conformal group ≡ SO(4,2)

The bulk metric may be represented by (Fefferman-Graham coordinates)  
2

2 2

(5) 2
( )a b

abds G dX dX g dx dx dz
z

 

= = −

( )2 2 2

(5)

kyds e g x dx dx dy 



−= −

It is sometimes convenient to represented the metric in Gaussian normal

coordinates 

Warp factor



Spherical Fefferman Graham  coordinates are obtained 

from (2.2) by defining the coordinete z via

This gives (with an appropriate integration constant)

(23)

𝑑𝑧

𝑧
= −

𝑑𝑟

ℓ 𝑓

𝑧4

ℓ4
=

16

𝜅2 + 4𝜇

𝑟2 +
𝜅
2
− 𝑟 𝑓

𝑟2 +
𝜅
2
+ 𝑟 𝑓

The inverted relation can be written as 

𝑟2 =
𝛼 + 𝛽𝑧2 + 𝛾𝑧4

𝑧2

where 𝛼 = ℓ4 𝛽 = −𝜅ℓ2 𝛾 =
𝜅2 + 4𝜇

16



Using the solution                      we can define a functional

Consider a 5-dim bulk action in AdS5 background

5

(5) (5)[ ] , )( abS d x G G = −  L

The bulk field Ф is completely determined by its field equations 

obtained from the variational principle               

given the boundary value                              and the induced metric        

on the boundary        .  

(5)
0

S


=



[ , ]h = 

 shell[ , ] [ , ]S h S h = 

where                            is the on-shell bulk action, i.e., the action in 

which the fields are solutions of the equations of motion given their 

boundary values.  The on-shell bulk action is still subject to the 

variation of the boundary values.

 shell [ , ]S h

h

( ) ( 0, )x z x   =



 4 CFT[ , ] ln exp ( )) ( ( )) ( )(S h d d x h x O x x      − − −   L

AdS/CFT conjecture: The action S[φ,h] can be identified with the generating

functional of a conformal field theory on the boundary

( )CFT L – conformal field theory Lagrangian

( )O  – operators of dimension Δ

2

( ( )) ( ( )) ( ( )) ( ( ))
( ) ( )

S
O x O y O x O y

x y


   

 
= −

where the boundary fields serve as sources for CFT operators

In this way the CFT correlation functions can be calculated as functional 

derivatives of the on-shell bulk action, e.g.,



yielding a solution              . Using this we  define a functional

Given  induced metric        on the boundary the geometry is 

completely determined by the field equations obtained from the 

variation principle     
𝛿𝑆

𝛿𝐺𝑎𝑏
= 0

𝐺𝑎𝑏[ℎ]

𝑆[ℎ] = 𝑆 shell 𝐺𝑎𝑏[ℎ]

where                               is the on-shell bulk action𝑆shell 𝐺𝑎𝑏[ℎ]

h

Consider a bulk action with only gravity in the bulk

(5)
5

5

5

1

8 2

R
S d x G

G

 
= − − −  

 




AdS/CFT conjecture: As before,  the action S[h] can be 

identified with the generating functional of a conformal field 

theory (CFT) on the boundary.

The induced metric hμν serves as the source for the 

energy-momentum tensor of the dual CFT so that its 

vacuum expectation value is obtained from the on shell 

classical action 

CFT 1

2

S
T

hh
 




=

−



. 

time

Conformal 

boundary 

at z=0

space

z

xRSII brane

at z=zbr

Foliation of the bulk:

In the second Randall-Sundrum (RS II) model a 3-brane is located  at a 

finite distance from the boundary of AdS5. 



In the RSII model by introducing the boundary in AdS5 at 

z = zbr instead of z = 0, the model is conjectured to be dual to 

a cutoff CFT coupled to gravity, with z = zbr providing the IR

cutoff (corresponding to the UV catoff of the boundary CFT)



The on-shell bulk action is IR divergent because physical distances 

diverge at z=0

(0) 2 (2) 4 (4)g g z g z g   = + + +  

de Haro,  Solodukhin,  Skenderis, Comm. Math. Phys. 217 (2001)

(2) (0)1 1

2 6
g R Rg  

 
= − 

 

(4) (2) 21
Tr Tr ( )

4
g g= −

2
2 2

(5) 2
( )ds g dx dx dz

z

 

= −

Explicit expressions for                          , in terms of arbitrary     
(2 ) , 2,4ng n =

(0)g

A 4-dim asymptotically AdS metric near z=0 can be expanded as

Holographic renormalization



We regularize the action by placing a brane (RSII brane) 

near the AdS boundary, i.e., at z = εℓ, ε<<1, so that the 

induced metric on the brane is

(0) 2 2 (2)

2

1
( )h g g  


= + +  

The bulk splits in two regions: 0≤ z ≤εℓ, and εℓ ≤ z ≤∞. 

We can either discard the region 0≤ z ≤ε (one-sided 

regularization) or invoke the Z2 symmetry (as in the original 

RSII model) and identify two regions (two-sided regularization). 

As before, we use the one-sided regularization. 



The equations of motion on the brane are obtained by 

demanding that the variation with respect to the induced metric 

hμν of the regularized on shell bulk action (RSII action) 

vanishes, i.e.,

reg[ ] 0S h =

The regularized bulk action is given by

(5)
reg 5

5 GH br

5

1
[ ] [ ] [ ]

8 2
z

R
S h d x G S h S h

G





 
= − − −  + + 

 


GH[ ]S h

– induced metric on the braneh

4 4

br matt[ ]S h d x h d x h= − − + −  L

– Gibbons-Hawking boundary term              

– brane action              



reg ren

1 2 3
0

[ ] lim( [ ] [ ] [ ] [ ])S h S h S h S h S h
→

= + + +

The necessary counter-terms are

S.W. Hawking, T. Hertog, and H.S. Reall, Phys. Rev. D 62 (2000)

Next we renormalize the boundary action. The renormalized 

boundary action is obtained by adding counter-terms and 

taking the limit  ε→0



Now we demand that the variation with respect to the induced 

metric hμν of the regularized on shell bulk action (RSII action) 

vanishes, i.e.,
reg[ ] 0S h =

This may be expressed as matter on 

the brane

cosmological 

Constant term Einstein Hilbert term

AdS/CFT prescription

0.=
216

4

5





−+ 

R
hxd

G



ren 4 4

3 matt

5

3

8
S S d x h d x h

G
 



  
− − − − + −  

 
  L

ren 4 CFT

3

1
( )

2
S S d x h T h

 − = −



This is an explicit realization of the AdS/CFT correspondence:  

the vacuum expectation value of a boundary CFT operator is obtained  in 

terms of geometrical quantities of the bulk.

de Haro et al, Comm. Math. Phys. 217 (2001)

where

ren
CFT32 ( )S S

T
hh







−
=

−

The variation of the scheme-dependent  S3 combined with Sren yields

and              are the coefficients that appear in the expansion of 

the bulk metric

(2 )ng



The variation of the action yields Einstein’s equations on the

boundary

( )(0) CFT matt

N

1
8

2
R Rg G T T   − = +

metric on the 

boundary



First, we represent the  bulk metric in AdS-Schwarzschild 

static coordinates  ( , , , , )r   

)sin(
)(sin

= 222
2

22 



 dddd ++

Holographic cosmology
We now seek a cosmological solution to the holographic 

Einstein equations such that the induced metric at the 

boundary has the FRW form

2 (0) 2 2 2( ) kds g dx dx dt a t d  = = − 

2
2 2 2 2

(5) ( )
( )

dr
ds f r d r d

f r
= − − 

where
2 2

2 2
( )

r
f r

r
 = + −

5 bh

2

8

3

G M



=



2 2
2 2 2 2 2 2 2

(5) 2 2
( ) ( , ) ( , ) kds g dx dx dz t z dt t z d dz

z z

 


 = − = −  − N A

Starting from AdS-Schwarzschild static coordinates  

and making the coordinate transformation                                 

the bulk line element will take a general form

Imposing the boundary conditions at z=0:

( ,0) 1, ( ,0) ( )t t a t= =N A

( , ), ( , )t z r r t z = =

the induced metric at the boundary takes the FRW form

2 2 2 2( ) kds dt a t d= − 



From  the Einstein equations at the boundary we obtain the 

holographic Friedmann equation (from now on we assume spatial 

flatness, i.e., we put            )

The second Friedmann equation can be derived from the energy-

momentum conservation

𝐻2 −
ℓ2

4
𝐻4 =

8𝜋𝐺N

3
𝜌 +

4𝜇ℓ2

𝑎4

dark radiation

quadratic 

deviation

0 =

ሶ𝐻 1 −
ℓ2

2
𝐻2 = −4𝜋𝐺N(𝑝 + 𝜌) −

2𝜇ℓ2

𝑎4

where
matt matt

00 , i

iT p T = = −

dark radiation
quadratic 

deviation

E. Kiritsis, JCAP 0510 (2005);  Apostolopoulos et al, Phys. Rev. Lett. 102,  (2009); 

N.B., Phys. Rev. D 93 (2016), arXiv:1511.07323



The holographic cosmology has  interesting properties. Solving the first 

Friedmann equation as a quadratic equation for H2 we find

𝐻2 =
2

ℓ2
(1 ± 1 − 8𝜋ℓ2𝐺N𝜌/3)

Demanding that this equation reduces to the standard Friedmann

equation in the low energy limit, i.e., in the limit when

ℓ2𝐺N𝜌 ≪ 1

it follows that we must discard  the + sign solution. Then, it follows 

that the physical range of the Hubble rate is between 0 and             

starting from its  maximal value                       at an arbitrary initial 

time t0. At that time, which may be chosen to be zero, the density 

and cosmological scale are both finite so the Big-Bang singularity is 

avoided!

2 /

max 2 /H =



Thank you



Conformal anomaly

( )
3

CFT 2

GB

5128
T G C

G






= −

compared with the general result from field theory

Gauss-Bonnet invariant

Weyl tensor squared

The two results agree if we ignore the last term 

and identify 3

5128
b c

G
= =

𝑇CFT 𝜇
𝜇

= 𝑏𝐺GB − 𝑐𝐶2 + 𝑏′​​□𝑅

2

GB 4G R R R R R 

 = − +



Generally b ≠ c because

s f v

2

(11 / 2) 62

360(4 )

n n n
b



+ +
=

but  in the N = 4 U(N) super YM theory b=c with

2 2 2

s f v6 , 4 ,n N n N n N= = =

The conformal anomaly is correctly reproduced if we 

identify  
3 2

5

2N

G 
=

s f v

2

3 12

120(4 )

n n n
c



+ +
=



0y = y →

Consider an additional 3-brane moving in the 5-d  bulk 

spacetime with metric 

Dynamical Brane as a Tachyon

2 2 2

(5) = ( )ds y g dx dx dy   −



The points on the brane can be are parameterized by                                    

The 5-th coordinate Y is treated as a dynamical field that depends on x. 

From the brane action  

( )( ),MX x Y x=

using the induced metric

4 i

br = det ndS d x g− −

ind 2

(5) , , , ,= = ( )M N

MNg g X X Y g Y Y      − (35)

one finds

( )
1/2

4 4 2

br , ,= ( ) 1S d x g Y g Y Y

    −− − −

(36)



Exercise No 12: 

(a)Prove the following relation 

for a general metric gμν , unit timelike vector uμ , and α2 < 1

2 2det( ) = (1 )detg u u g    − −

(b) Use (a) to derive (36) from the brane action (35) 

Hint: use a comoving reference frame.


