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In 4+1 dimensions:

Latin indeces a,b, =0,1,2,3,4 and

𝐺𝑎𝑏 – 5-dim. metric tensor, metric signature is +−−−−

𝑅𝑎𝑏
(5)

– 5-dim. Ricci curvature tensor

𝑅(5)≡ 𝐺𝑎𝑏 𝑅𝑎𝑏
(5)

– Ricci scalar

Λ5 – 5-dim.  cosmological constant

G5 – 5-dim.  gravitation constant

Notation

in 3+1 dimensions:

Greek indices  μ,ν,..=0,1,2,3,

𝑔μν – 4-dim. metric tensor, metric signature is +−−−



We use the Landau-Lifshitz curvature convention 

L.D.Landau, E.M. Lifshitz, Classical theory of fields

The Riemann tensor  is defined as

and the Ricci tensor as

Then, the Einstein equations are

Notation



Basics of the standard  cosmology

Legendre transformation and applications

Basic fluid mechanics 

Lagrangian and Hamiltonian 

Lecture 1 – Preliminaries



• General relativity

• Cosmological principle – homogeneity (matter 

density same everywhere) and isotropy (no 

preferred direction) of space – approximate 

property on very large scales (~Glyrs today)

• Fluctuations of geometry in the early Universe 

cause structure formation (stars, galaxies, clusters

...)

Basics of the Standard cosmology

Theoretical pillars:



General Relativity

Gravity is described by Einstein’s field equations

where

g - metric tensor

R - Ricci curvature tensor

R= g R - Ricci scalar

 - cosmological constant

T  - energy – momentum tensor

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺N𝑇𝜇𝜈 + 𝑔𝜇𝜈Λ



Homogeneity and isotropy of space

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑑𝑡2 − 𝑎2(𝑡)

𝑑𝑟2

1 − 𝑘𝑟2
+ 𝑟2𝑑Ω2

Cosmological principle 

the curvature constant 𝑘 takes on the values 1/𝑟0
2, 0, or −1/𝑟0

2, 

for a closed, flat, or open universe, respectively. The above 

metric is known as the Friedmann-Robertson-Walker (FRW) 

metric.

– cosmological scale( )a t



The FRW metric can be written in various forms:

The transformation

brings the line element to another convenient form 

2
2 2 2 2 2

2
( )

1

dr
ds dt a t r d

kr

 
= − +  

− 

t – synchronous  or cosmic time

r – comoving radial coordinate

Expanding Spacetime

where

Standard representation

2 2 2 2 2 2( sin ( ) )ds dt a d k d = − + 

1
sinr k

k
=

–new comoving radial coordinate



Cosmological distances:

𝐷p = න

1

2

𝑑𝑠p = 𝑎𝑟0𝛼

physical or proper distance

𝐷 =
𝐷p

𝑎
= 𝑟0𝛼

comoving distance

Infinitesimal proper interval is the line ellement

defined for

p 021

adr
ds ar d

kr
= =

−

0, 0dt d=  =

where 𝑘 = 1/𝑟0
2 , 𝑟0 is the 

curvature radius, and 𝛼 = Τχ 𝑟0

2

pds ds= −


0ar

pD

1

2vrec



Recession velocity

𝑣rec ≡
𝑑𝐷p

𝑑𝑡
= ሶ𝑎𝐷 =

ሶ𝑎

𝑎
𝐷p

a
H

a
=

In this way we obtain Hubble’s law


0ar

pD

1

2vrec

We define the Hubble expansion 

rate as

𝑣rec = 𝐻𝐷p



• radiation

• dust

• vacuum

ሷ𝑎 = −
4𝜋𝐺N
3

(𝜌 + 3𝑝)

3(1 )wa w p − + =

Various kinds of  cosmic fluids with linear equations of  

state  𝑝 = 𝑤𝜌
4

R R 3 1 3p w a  −= = 
3

M 0 0p w a −= = 

k 
< 0 open

0   flat=

0   closed

Friedmann equations

01p w a  = − = − 

ሶ𝑎

𝑎

2

+
𝑘

𝑎2
=
8𝜋𝐺N
3

𝜌

expansion rate
a

H
a



ሶ𝜌 + 3𝐻(𝜌 + 𝑝) = 0



0.69

0.26

0.04

0.01

Dark nature of the Universe 

According to recent observations  (Planck Satellite Mission 
2018):

• Out of that less than 5% is ordinary (“baryonic”)

• About 26% is Dark Matter

• About 69% is Dark Energy (Vacuum Energy)

More than 99% 
of matter is not 
luminous



Early Universe - Inflation

A short period of inflation follows – very rapid 

expansion -

1025 times in 10-32 s.



Observations of the cosmic 

microwave background radiation 

(CMB) show that the Universe is 

homogeneous and isotropic. The 

problem arises because the 

information about CMB radiation 

arrive from distant regions of the 

Universe which were not in a causal 

contact at the moment when radiation 

had been emitted – in contradiction 

with the observational fact that the 

measured temperature of radiation is 

equal (up to the deviations of at most 

about 10-5) in all directions of 

observation.

The horizon problem. 



The flatness problem

Observations of the average matter density, 

expansion rate and fluctuations of the CMB 

radiation show that the Universe is flat or with a 

very small curvature today. In order to achieve 

this, a “fine-tuning“ of the initial conditions

is needed, which is rather unnatural. The answer 

is given by inflation: 



The initial density perturbations  

The question is how the initial deviations from 

homogeneity of the density are formed having in mind that 

they should be about 10-5 in order to yield today’s 

structures (stars, galaxies, clusters). The answer is given 

by inflation: perturbations of density are created as 

quantum fluctuations of the inflaton field.

510−510−= ,v Hd



Legendre Transformation

Consider an arbitrary smooth function f(x). We can  define another 

function g(u) such that 

where the variables x and u (called conjugate variables) are related via 

𝑢 =
𝜕𝑓

𝜕𝑥
, 𝑥 =

𝜕𝑔

𝜕𝑢

(1.1)

The proof is based on the property that a function f(x) at an arbitrary 

point x0 , can be locally represented by  

where

0

0

x

f
u

x


=
0 0 0( )f x u x g= −

( ) ( )f x g u xu+ =



g depends on u0

0 tanu =f

x-g x0



By the symmetry of (1)  we can also write

0

0

u

g
x

u


=


where

Exercise No 1: Prove this using the geometry in the figure

Simple geometric meaning

0 0 0( )g u x u f= −



f

x

By variing x0 the 

function f(x) may be 

regarded as the 

envelope of tangents
-g

g is an implicit function of 𝑢 = tan𝛼

𝛼



The generalization to n dimensions is straightforward:

with

,i i

i i

f g
u x

x u

 
= =
 

1 2 1 2

1

( , ,..., ) ( , ,..., )
n

n i i n

i

f x x x u x g u u u
=

= −



Applications

1) Classical mechanics

H(𝑞𝑖 , 𝑝𝑗) =෍

𝑗

ሶ𝑞𝑗𝑝𝑗 − L(𝑞𝑖 , ሶ𝑞𝑗) 𝑝𝑖 =
𝜕L

𝜕 ሶ𝑞𝑖
, ሶ𝑞𝑖 =

𝜕H

𝜕𝑝𝑖

2) Quantum field theory

[ ] = [ ] ( ) ( )W J dxJ x x  − 

( ) , ( )
( ) ( )

W
J x x

x J x

 


 


= − =

W – generating functional of  connected Green’s functions 

Γ – generating functional of 1-particle irreducible Green’s functions 



3) Thermodynamics

𝐹(𝑇) = 𝐸(𝑆) − 𝑇𝑆

,
F E

S T
T S

 
= − =

 

Canonical ensemble (particle number fixed)

The canonical (Helmholz) free energy  F as a function of temperature  T

(and volume V ) is related to the internal energy E via a one-dimensional 

Legendre transformation. 

with

The entropy S and temperature T are conjugate variables.



Grandcanonical ensemble (chemical potential μ fixed)

The grandcanonical thermodynamic potential Ω=-pV as a function of 

two variables  T and μ is related to the internal energy E=ρV via  

two-dimensional  Legendre transformation

( , ) ( , )T E S N TS N  = − −

By dividing by V, this may be  expressed locally as

( , ) ( , )p T Ts n s n  = + − (1.2)

together with the conditions

, ,
p p

s n
T 

 
= =
 

,T
s n

 


 
= =
 

(1.3)

The entropy S=sV and particle number N=nV are conjugate to 

the temperature T and chemical potential μ, respectively



1p
d nd d

T T T


= −

two useful thermodynamic identities follow 

Gibbs-Duhem relation

1s
dw Td dp

n n
= +

Exercise No 2: Derive (1.5) and (1.6) from (1.2)-(1.4)

p
w

n

+
=

Introducing the specific enthalpy (or the specific heat content)

TDS equation

(1.4)

(1.5)

(1.6)



Assume that matter is a perfect fluid

described by the energy-momentum tensor

u – fluid velocity 

p   – pressure

ρ – energy density

( )T p u u pg   = + −

Basic Fluid Mechanics

(1.7)



0=;
T

0=;


Tu

ሶ𝜌 + 𝑢𝜈 ;𝜈(𝜌 + 𝑝) = 0.

0)( , =+−+  uppup 

ሶ𝜌 = 𝑢𝜈𝜌,𝜈 ሶ𝑝 = 𝑢𝜈𝑝,𝜈 ሶ𝑢𝜇 = 𝑢𝜈𝑢𝜇;𝜈

From the energy momentum conservation 

using                        , we obtain the continuity equation

Combining this and (8) we obtain the Euler equation

where

The covariant divergence of the fluid velocity 𝑢𝜈;𝜈 or the fluid 

expansion rate is, in the cosmological context,  related to  

the Hubble expansion rate as 𝑢𝜈;𝜈 = 3𝐻 .

Exercise No 3: Derive (1.9) and (1.10) from (1.7) and (1.8)

(1.9)

(1.10)

(1.8)



Isentropic and adiabatic fluid

A flow is said to be isentropic when the specific entropy s/n is constant, 

i.e., when

and is said to be adiabatic when s/n is constant along the flow lines, 

i.e., when

As a consequence of  (1.11) and the thermodynamic identity (1.5) 

(TdS equation) the Euler equation (1.10) simplifies to

In this case, we may introduce a scalar function φ such that

Exercise No 4: Derive  (1.12) from (1.10) using (1.5) and (1.11)

which obviously solves (1.12). This is called the potential flow.

,wu =

(1.11)

(1.12)

(1.13)



The propagation of perturbations in a fluid is assumed to be 

an isentropic process. The perturbations propagate at the 

speed of sound defined by 

𝑐s
2 = ቤ

𝜕𝑝

𝜕𝜌
𝑠/𝑛

or equivalently

𝑐s
2 =

𝑛

𝑤
ቤ

𝜕𝑤

𝜕𝑛
𝑠/𝑛

Exercise No 4a: Show this equivalence using  (1.4) and (1.5)

Speed of sound

Here, the subscript 𝑠/𝑛 or denotes that the derivative is 

taken at constant specific entropy



The dream of all physicists is a comprehensive 

fundamental theory, which is often in popular scientific 

literature called the ‘’theory of everything’’. Of course, 

nobody expects that this theory provides answers to all 

the issues, for example, the cause of a cancer, how the 

mind works, and so on. From the theory of everything 

we only require to explain basic processes in nature. 

Today most physicists share the following view of the 

world: the laws of nature are unambiguously described 

by the principle of some unique action (or Lagrangian) 

that fully defines the vacuum, the spectrum of elementary 

particles, forces and symmetries.

Lagrangian and Hamiltonian



The principle of least action                 yields classical equations of motion

Classical trajectory

Classical description

1

x

2

1 2, , 

S

cl 
classical 

configuration

stable

metastable

4 det ( , )S d x g X = − L

𝑋 = 𝑔𝜇𝜈𝜃,𝜇𝜃,𝜈

One can generalize this to more fields                   with

where  

0S =

, ,i i iX g 

  =

Consider a single self-interacting scalar field θ with action



From the requirement        one finds the classical equations of 

motion  

If  L does not depend on θi,  the associated  current is conserved, i.e.

( ) ,ii X iJ  = L

To each scalar field θi one can associate a current

where 

( ); 0iJ 

 =

which follows directly from (14). This current conservation law is 

related to the shift symmetry

i i c → +

, ;i i 
 

  
=    

L L

X
X





LL

(1.14)

0S =

The Euler-Lagrange equations



[ ] [ ][ ]iS S

i

Z e d e
 − −=  

Quantum description

Through the action S we can define a probability distribution

P

classical 

configuration

Classical trajectory (satisfying δS=0)

𝜑1

x

𝜑2

Z = Partition function – path integral

cl

[ ]

[ ]
iS

i

e
P

Z




−

=



( )T p u u pg   = + −

, ,

2
2

det
X

S
T g

gg
   


 


= = −

−
L L

Field theoretical description of a fluid – k-essence

This may be written in a perfect fluid form as in equation (7), 

is called the k-essence. Assuming  X>0  we  define the stress tensor

where we identify the velocity, pressure and energy density

X
X





LL,         where

A field theory in which the Lagrangian is a function of a single field θ

and its kinetic term                        , with action

p =L 2 XX = −L L𝑢𝜇 =
𝜃,𝜇

𝑋

4 det ( , )S d x g X = − L
, ,X g

  =

The speed of sound can be expressed as

𝑐s
2 = ቤ

𝜕𝑝

𝜕𝜌
𝜃

=
𝑝𝑋
𝜌𝑋

=
𝑝𝑋

𝑝𝑋 + 2𝑋𝑝𝑋𝑋
=
𝑝 + 𝜌

2𝑋𝜌𝑋
(14a)



𝜕ℒ

𝜕𝜃,𝜇 ;𝜇

=
𝜕ℒ

𝜕𝜃

Using the fluid description, the Euler-Lagrange equation

can be written in the form

𝑢𝜇
𝜕ℒ

𝜕 𝑋 ;𝜇

+ 𝑢𝜈;𝜈
𝜕ℒ

𝜕 𝑋
=
𝜕L

𝜕𝜃

This form is particularly convenient in the cosmological context. In 

FRW spacetime, 𝜃 depends on time only so 𝑋 = ሶ𝜗2 , 𝑢𝜇 = 1,0,0,0
and

𝑢𝜈;𝜈 =
1

−𝑔
𝜕𝑡 −𝑔 = 3

ሶ𝑎

𝑎
= 3𝐻

𝜕𝑡
𝜕L

𝜕 ሶ𝜗
+ 3𝐻

𝜕L

𝜕 ሶ𝜗
=
𝜕L

𝜕𝜃

The Euler-Lagrange equation turns into a 2nd order differential 

equation 

𝑢𝜇 =
𝜃,𝜇

𝑋
where



Suppose for definiteness that L depends on a single field θ and its  

derivative 𝜃,𝜇. The canonical Hamiltonian is defined through a Legendre 

transformation which involves one pair of conjugate variables θ,0 and π0

0 0

can , ,0 ,0 ,( , , ) = ( , , ), 1,2,3i i i       − =H L

where 

The covariant Hamiltonian (de Donder-Weyl Hamiltonian)

, ,( , ) = ( , ) 

      −H L

,

,

= =

 



 
 

 

 

L H
where

0 can
,0 0

,0

= = 
 

 

 

L H

Hamiltonian

(1.15)

(1.16)



Historically, the covariant Hamiltonian was first introduced by De Donder

1930 and Weyl 1935 in the so called polysymplectic formalizm

Th. De Donder, Th´eorie Invariantive Du Calcul des Variations, Gaultier-

Villars & Cia., Paris, France (1930).

H. Weyl, Annals of Mathematics 36, 607 (1935)

Recent references

C. Cremaschini and M.Tessarotto, ``Manifest Covariant Hamiltonian Theory of 

General Relativity,'‘  Appl. Phys. Res. 8, 60 (2016), arXiv:1609.04422 

J. Struckmeier, A. Redelbach, Covariant Hamiltonian Field Theory, 

Int. J. Mod. Phys. E 17, 435 (2008),  arXiv:0811.0508 



In this case the Lagrangian  L depends on the field θ and its  kinetic 

term 𝑋 = 𝑔𝜇𝜈𝜃,𝜇𝜃,𝜈. The conjugate momentum field is given by

𝜋𝜃
𝜇
=

𝜕L

𝜕𝜃,𝜇
= 2ℒ𝑋𝑔

𝜇𝜈𝜃,𝜈

For a timelike 𝜃,𝜇, i.e., for X>0, we may also define 

𝜋𝜃 =
𝜕ℒ

𝜕 𝑋
= 𝑔𝜇𝜈𝜋𝜃

𝜇
𝜋𝜃
𝜈

k-essence Hamiltonian

Then, H is related to L via a one-dimensional Legendre transformation 

H(𝜃, 𝜋𝜃) = 𝜋𝜃 𝑋 − L(𝜃, 𝑋)

𝜋𝜃 =
𝜕L

𝜕 𝑋
𝑋 =

𝜕H

𝜕𝜋𝜃
with and



Examples:

H = 𝑉(𝜃)2 + 𝜋𝜃
2

3) Scalar Born-Infeld field theory (tachyon condensate)

ℒ = −𝑉(𝜃) 1 − 𝑋

1
( )

2
X V = −L

1) Canonical scalar field theory 

H =
1

2
𝜋𝜃
2 +𝑉 𝜃



The energy-momentum tensor corresponding to the k-essence 

Lagrangian 

may be expressed as a perfect fluid   (equation (1.7)) 

with

𝑇𝜇𝜈 = 2
𝛿L

𝛿𝑔𝜇𝜈
− L𝑔𝜇𝜈 = 2L𝑋 𝜋𝜃𝜇𝜋𝜃𝜈 − 𝑔𝜇𝜈L

𝑢𝜇 =
𝜋𝜃𝜇
𝜋𝜃

( )T p u u pg   = + −

p =L 2 XX = −L L

(1.17)

𝜋𝜃 = 𝑔𝜇𝜈𝜋𝜃
𝜇
𝜋𝜃
𝜈

Hamilton field equations



It may be easily verified that this Hamiltonian is equal to 

the energy density 

𝜌 = 𝑇𝜇𝜇 + 3L = H

H(𝜃, 𝜋𝜃
𝜇
) = 𝜋𝜃

𝜈𝜃,𝜈 − L(𝜃, 𝜃,𝜇)

The  field  variables are constrained by  

H is related to L through the Legendre transformation (1.15)

𝜃,𝜇 =
𝜕H

𝜕𝜋𝜃
𝜇

𝜋𝜃
𝜇
=

𝜕L

𝜕𝜃,𝜇

Exercise No 5: Prove   ρ = H using (1.15a), (1.17),  and (1.18)

(1.18)

(1.19)

(1.15a)



Now we multiply the first equation by          , take a covariant 

divergence of the second equation, use the Euler-Lagrange equation 

and the obvious relation  

𝑢
𝜇

ሶ𝜃 =
𝜕H

𝜕𝜋𝜃
ሶ𝜋𝜃 + 3𝐻𝜋𝜃 = −

𝜕H

𝜕𝜃

𝜕H

𝜕𝜃
= −

𝜕L

𝜕𝜃

We obtain a set of two 1st order Hamilton’s diff. equations 

where

ሶ𝜃 ≡ 𝑢
𝜇
𝜃,𝜇 , ሶ𝜋𝜃 = 𝑢

𝜇
(𝜋𝜃),μ

3𝐻 = 𝑢 ;𝜇
𝜇

is the fluid expansion rate

and

Exercise No 6:  Derive eqs. (1.20)  from (1.15a) and (1.19)

(1.20)



Thank you



f

x

By variing x0 the function 

f(x) may be regarded as 

the envelope of tangents

The generalization to n dimensions is straightforward:

with

-g g is an implicit function of u  

,i i

i i

f g
u x

x u

 
= =
 

1 2 1 2

1

( , ,..., ) ( , ,..., )
n

n i i n

i

f x x x u x g u u u
=

= −



The tachyon condensate is an effective Born-Infeld type 

Lagrangian

The  tachyon field θ describes unstable modes in string 

theory 

A typical potential has minima at    . Of particular 

interest are the inverse power law potential and 

exponential potential 𝑉 ∝ 𝑒−𝜔𝜃

L = −𝑉 𝜃 1 − 𝑔𝜇𝜈𝜃,𝜇𝜃,𝜈

𝑉 ∝ 𝜃−𝑛

A. Sen, JHEP 0204 (2002); 0207 (2002). 

Example: Tachyon condensate 

𝜃 = ±∞



Density of Matter in Space

The best agreement with cosmologic 

observations are obtained by the models with a 

flat space

According to Einstein’s theory, a flat space 

universe requires critical matter density cr today

cr  10-29 g/cm3

Ω=  / cr ratio of the actual to the critical density

For a flat space Ω=1



From astronomical 

observations:

luminous matter (stars, 

galaxies, gas ...)  

lum/cr0.5%

From the light element 

abundances and comparison 

with the Big Bang

nucleosynthesis:

baryonic matter(protons, 

neutrons, nuclei) Bar/cr5%

Total matter density fraction ΩM=M/cr 0.31

Accelerated expansion  and comparison of the standard Big 
Bang model with observations requires that the dark energy 
density (vacuum energy) today ΩΛ=  /cr = 0. 69%

What does the Universe consist of?



DM
DM

tot tot tot

0.05 0.26 0.69B
B

  

  


 =   =   = 

These fractions change with time but for a 

spatially flat Universe the following always holds:

Density fractions of various kinds of matter today with 

respect to the total density

tot crit =



3 4 1/2

0( ) ( )M RH a H a a− −

=  + +

Easy to calculate using the present observed fractions of 

matter, radiation and vacuum energy. 

For a spatially flat Universe from the first Friedmann 

equation and energy conservation we have

𝐻0 = ℎ × 100​​​km s−1Mpc−1 = (14.5942​Gyr)−1, ℎ = 0.67

The age of the Universe T can be calculated using

Age of the Universe

Exercise No 9: Calculate T using

ΩΛ=0.69, ΩM=0.31, ΩR=0.

1

0 0

T
da

T dt
aH

= = 



Hot DM refers to low-mass neutral particles that are still 

relativistic when galaxy-size masses (              ) are first 

encompassed within the horizon. Hence, fluctuations on 

galaxy scales are wiped out. Standard examples of hot 

DM are neutrinos and majorons. They are still in 

thermal equilibrium after the QCD deconfinement 

transition, which took place at  TQCD ≈ 150 MeV. 

The cosmological-fluid pressure is not negligible. The 

equation of state similar to radiation

𝑝DM ≅ Τ𝜌DM 3
Hot DM particles have a cosmological number density 

comparable with that of microwave background 

photons, which implies an upper bound to their mass of 

a few tens of eV.

 M1210



Warm DM particles are just becoming nonrelativistic 

when galaxy-size masses enter the horizon. Warm 

DM particles interact much more weakly than 

neutrinos. They decouple (i.e., their mean free path 

first exceeds the horizon size) at T>>TQCD. As a 

consequence, their mass is expected to be roughly 

an order of magnitude larger, than hot DM particles. 

The cosmological-fluid pressure is  not negligible but 

small

𝑝DM ≪ 𝜌DM
Examples of warm DM are  keV sterile neutrino, 

axino, or gravitino in soft supersymmetry breaking 

scenarios. 



Cold DM particles are already nonrelativistic 

when even globular cluster masses (            ) 

enter the horizon. Hence, their free path is of 

no cosmological importance. In other words, all 

cosmologically relevant fluctuations survive in 

a universe dominated by cold DM. The 

cosmological-fluid pressure is negligible. The 

equation of state is similar to dust

𝑝 ≈ 0
The two main particle candidates for cold dark 

matter are the lowest supersymmetric weakly 

interacting massive particles (WIMPs) and the 

axion.

 M610



Another important property of DE is that its density does not

vary with time or very weakly depends on time. In contrast ,

the density of ordinary matter varies rapidly because of a

rapid volume expansion.

The rough picture is that in the early Universe when the

density of matter exceeded the density of DE the Universe

expansion was slowing down. In the course of evolution the

matter density decreases and when the DE density began to

dominate, the Universe began to accelerate.

Time dependence of the DE density



Because gravity acts as an attractive force

between astrophysical objects we expect that

the expansion of the Universe will slowly

decelerate.

However, recent observations indicate that the

Universe expansion began to accelerate since

about 5 billion years ago.

Repulsive gravity?

Dark Energy



New term: Dark Energy – fluid with negative 

pressure - generalization of the concept of vacuum 
energy 

Accelerated expansion   0

One possible explanation is the existence of a fluid 

with negative  pressure such that

and in the second Friedmann equation the universe 

acceleration     becomes positive  

3 0p + 

a

cosmological constant   = vacuum energy density 

with equation of state p=-ρ. Its negative pressure may 

be responsible for accelerated expansion!



Problems with Λ

1) Fine tuning problem. The calculation of the vacuum energy 

density in field theory of the Standard Model of particle 

physics gives the value about 10120 times higher than the 

value of Λ obtained from  observations. One possible way out 

is  fine tuning: a rather unnatural assumption that all 

interactions of the standard model of particle physics 

somehow conspire to yield cancellation between various 

large contributions to the vacuum energy resulting in a small 

value of Λ , in agreement with observations

2) Coincidence problem. Why is this fine tuned value of Λ 

such that DM and DE are comparable today, leaving one to 

rely on anthropic arguments? 



Most popular models of dark energy 

• Cosmological constant – vacuum energy density. 

Energy density does not vary with time.  

• Quintessence – a scalar field with a canonical kinetic 

term. Energy density varies with time. 

• Phantom quintessence – a scalar field with a negative 

kinetic term. Energy density varies with time. 

• k-essence – a scalar field whose Lagrangian is a 

general function of kinetic energy. Energy density varies 

with time. 

• Quartessence – a model of unifying of DE and DM. 

Special subclass of k-essence. One of the popular 

models is the so-called Chaplygin gas



Measuring CMB; the temperature map of the sky.

KT 2.723=

KT 100=

KT 200=



Angular (multipole) spectrum of the fluctuations of the CMB

(Planck 2013)





The tachyon condensate is an effective Born-Infeld type 

Lagrangian

The  tachyon field θ describes unstable modes in string 

theory 

A typical potential has minima at . Of particular 

interest is the inverse power law potential . 

For n > 2 , as the tachyon rolls near minimum, the pressure

very quickly and one thus apparently gets 

pressure-less matter (dust) or cold dark matter.

( )
, ,

1V g= − −


 
  L

nV −

A. Sen, JHEP 0204 (2002); 0207 (2002). 

L.R. Abramo and F. Finelli,  PLB 575(2002). 

Example: Tachyon condensate as CDM

0p  →L

 = 



,wu =NB1: The solution (13)                       is the relativistic analogue of a 

potential  flow in nonrelativistic fluid dynamics  

L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford,1993.

NB2: The potential flow (13) implies the isentropic Euler equation (12) but 

not the other way round. However if the fluid is isentropic and 

irrotational, then equations (12) and (13) are equivalent. The fluid is said 

to be irrotational if its vorticity vanishes. The vorticity is defined as 

where

Vanishing vorticity,  i.e., ωμν=0, implies 

This equation is satisfied if and only if                      .  Then, the Euler 

equation (12) is satisfied identically.
,wu =

A.H. Taub, Relativistic Fluid Mechanics, Ann. Rev. Fluid Mech. 10 (1978) 301



In a d-dimensional spacetime manifold (bulk), a 

hypersurface is a p-dimensional (p<d) submanifold 

(subspace) which can be either spacelike, timelike, or 

null. 

In particular, we will consider submanifolds of dimension 

p=d-1. For example, in the braneworld scenario, the 

Universe is  a 3+1-dimensional timelike hypersurface in a 

4+1-dimensional  bulk 

𝑋𝑎 – coordinates in the bulk 

a,b=0,1,2,3, …, d-1

𝑥𝜇 – coordinates on the 

hypersurface        μ,ν=1,2,3, …, p

Hypersurfaces



Defining equations

A d-dimensional hypersurface Σ in a d+1-dimensional 

bulk with metric          can be selected either by

1) putting a restriction on the coordinates

so that  dΦ=0 along the hypersurface,  or by

2) parametric equations of the form

𝛷(𝑋𝑎) = const

𝑋𝑎 = 𝑋𝑎(𝑥𝜇)

Xa

xi

x0𝑋𝑎 – coordinates in the bulk 

a,b=0,1,2,3, …, d

𝑥𝜇 – coordinates on the 

hypersurface      μ,ν=0,1,2,3, …, d-1

abG



Normal vector

Because 𝑑𝛷 ≡ 𝛷,𝑎𝑑𝑋
𝑎 = 0, the vector 𝛷,𝑎 is orthogonal  to 

the displacements 𝑑𝑋𝑎 along Σ. Depending on the sign of 

the norm of the vector 𝛷,𝑎 we have 

𝐺𝑎𝑏𝛷,𝑎𝛷,𝑏 
>0  - spacelike hypersurface

<0  - timelike hypersurface

=0  - null  hypersurface

If                        , 𝛷,𝑎 can be normalized𝐺𝑎𝑏𝛷,𝑎𝛷,𝑏 ≠ 0

𝑛𝑎 =
𝛷,𝑎

|𝐺𝑎𝑏𝛷,𝑎𝛷,𝑏|so that


1 for a spacelike hypersurface (na is a timelike vector)

-1  for a timelike hypersurface (na is a spacelike vector) 

𝑛𝑎 =



Induced metric

𝑑𝑠Σ
2 = 𝐺𝑎𝑏𝑑𝑋

𝑎𝑑𝑋𝑏 = 𝐺𝑎𝑏
𝜕𝑋𝑎

𝜕𝑥𝜇
𝜕𝑋𝑏

𝜕𝑥𝜈
𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑔𝜇𝜈

in𝑑 𝑑𝑥𝜇𝑑𝑥𝜈

For the displacements 𝑑𝑋𝑎 on Σ we have 

The 4-tensor                                                                                                     

is called the induced metric, or first fundamental form, of 

the hypersurface Σ. This equation can be regarded as a 

coordinate transformation

𝐺′𝑐𝑑 = 𝐺𝑎𝑏
𝜕𝑋𝑎

𝜕𝑥𝑐
𝜕𝑋𝑏

𝜕𝑥𝑑

from {Xa}  to {xc} coordinate frames and we restrict the tensor 

G’ab to the coordinates a,b=0,1,2, …,d-1 which we denote by 

Greek letters μ,ν. From now on we restrict attention to d=4.

𝑔𝜇𝜈
in𝑑 = 𝐺𝑎𝑏

𝜕𝑋𝑎

𝜕𝑥𝜇
𝜕𝑋𝑏

𝜕𝑥𝜈



Projector

is the projection tensor onto Σ, where na is a unit vector normal to Σ with  

𝜖 = 1 (-1) for a timelike (spacelike) vector na . Clearly 𝑛𝑎ℎ𝑎𝑏 = 0.

One can show that the 4-tensor ℎ𝜇𝜈, 𝜇, 𝜈 = 0,1,2,3, is also an induced 

metric on Σ which is related to 𝑔𝜇𝜈
in𝑑 by a coordinate transformation.

To show this, make a coordinate transformation 𝑋𝑎 = 𝑋𝑎 ෨𝑋𝑏 such 

that the normal vector in the new coordinates takes the form ෤𝑛𝑎 = 𝛿𝑦
𝑎 , 

where the coordinate y is such that the defining equation for the 

hypersurface Σ is 𝑦 = const. In this coordinate frame the projector onto 

Σ is 

The tensor 

ℎ𝑎𝑏 = 𝐺𝑎𝑏 − 𝜖𝑛𝑎𝑛𝑏 𝑎, 𝑏 = 0,1,2,3,4

෨ℎ𝜇𝜈 = ෨𝐺𝜇𝜈 = ෤𝑔𝜇𝜈
ind

෨𝐺𝜇𝜈 = 𝐺𝑎𝑏
𝜕𝑋𝑎

𝜕 ෨𝑋𝜇
𝜕𝑋𝑏

𝜕 ෨𝑋𝜈

where the  bulk metric components in new coordinates are obtained 

as usual



Extrinsic curvature

restricted to the coordinates μ,ν=0,1,2,3, i.e., the 4-

tensor Kμν , is called the extrinsic curvature, or second 

fundamental form, of the hypersurface Σ. In special 

coordinates, with 𝑛𝑎 = 𝛿𝑦
𝑎 , we find 

;

c d

ab a b d cK h h n=

The projection of the covariant derivative of nd

𝐾 ≡ 𝐺𝑎𝑏𝐾𝑎𝑏 = ℎ𝑎𝑏𝐾𝑎𝑏 = 𝑛;𝑎
𝑎

The trace K of 𝐾𝑎𝑏

𝐾𝜇𝜈 = 𝑛𝜇;𝜈 = −Γ𝜇𝜈
𝑎 𝑛𝑎



Einstein-Hilbert action

In 4+1 dimensional spacetime with boundary at a 4 dim. 

hypersurface Σ , the vacuum Einstein equations can be 

derived from the action

𝑆 =
1

8𝜋𝐺5
න𝑑5𝑥 −𝐺 −

𝑅 5

2
− Λ5 + 𝑆GH

The Gibbons-Hawking boundary term is  

𝑆GH =
𝜖

8𝜋𝐺5
Σ𝑑׬

4𝑥 −det ℎ (𝐾 − 𝐾0)

where 𝜖 = ±1 for a timelike (spacelike) hypersurfaceΣ and K0

is the trace of the extrinsic curvature of Σ embedded in flat 

spacetime. The GH term is necessary to cancel a generally 

nonvanishing contribution of the boundary in the variation of 

the action δS. 



Then, the variation principle δS=0 yields the Einstein 

equations in vacuum

and junction conditions

where 𝑇𝛽
𝛼 is the energy momentum tensor for matter 

localized  on the hypersurface Σ and [[f]] denotes the 

discontinuity of a function f(x) across Σ, i.e.,

𝑓 𝑥 = lim
𝜀→0

(𝑓 𝑥 + 𝜀 − 𝑓 𝑥 − 𝜀 )

𝐾𝛽
𝛼 − 𝐾𝛿𝛽

𝛼 = 8π𝐺5𝑇𝛽
𝛼

The junction conditions prescribe the appropriate boundary 

conditions across a singular hypersurface Σ supported by a 

localized energy momentum tensor 𝑇𝛽
𝛼 . 



2 2

part 1S ds d d x  = − = − = − −  

𝐺𝑎𝑏 – metric in the bulk

𝑋𝑎 – coordinates in the bulk; 

𝜏 – synchronous time coordinate (𝐺00=1)

where

Relativistic particle action

𝑑𝑠2 = 𝐺𝑎𝑏𝑑𝑋
𝑎𝑑𝑋𝑏, 𝛾 = 𝐺𝑎𝑏

𝜕𝑋𝑎

𝜕𝜏

𝜕𝑋𝑏

𝜕𝜏
, 𝑎, 𝑏 = 0, . . . , 𝑑

PARTICLE is a 0+1-dimdimensional object the dynamics 

of which in d+1-dimensional bulk is described by the  

relativistic pointlike-particle action

2 , 1,...,
i j

ij

x x
x G i j d

 

 
= =

 
𝜏 ≡ 𝑥0

,



Strings and (mem)branes

STRING is a 1+1-dimdimensional object moving in the 

d+1 dimensional bulk

p-BRANE is a p+1-dim. object that generalizes the 

concept of  membrane (2-brane) or string (1-brane) 

string

2-brane

bulk



ind

string det( )S T d d g = − −

𝑇 – string tension

𝑋𝑎 – coordinates in the bulk; 

𝑠0 ≡ 𝜏 – timelike coordinate on the string sheet

𝑠1 ≡ 𝜎 – spacelike coordinate on the string sheet 

where gαβ is induced metric (“pull back”)

String action

1,0,ind =







= 


s

X

s

X
Gg

ba

ab

The dynamics of  a STRING in d+1-dimensional bulk is 

described by the Nambu-Goto action (generalization of 

the relativistic particle action)

𝑋𝑎

s1

s0

string

string shit



𝑋𝑎 – coordinates in the bulk 

a,b=0,1,2,3,4

𝑥𝜇 – coordinates on the brane

μ,ν=0,1,2,3 

abG – metric in the bulk

a b

ab

X X
h G

x x
  

 
=

 

Xa

xi

x0
z

σ – brane tension 

– induced metric

4

br = detS d x h− −

The dynamics of  a p-BRANE in d+1-dimensional bulk is 

described by the Nambu-Goto action similar to the string 

action. Nambu-Goto action for a 3-brane embedded in a

4+1 dim space-time (bulk)

Brane  action


