Strings, Fields and Holographic Correspondence

R.C.Rashkov*[†]

* Department of Physics, Sofia University,

[†] ITP, Vienna University of Technology

September, 2022

This project was partially supported by BNSF grants H-28/5 and SEENET-TMP.

1 Why holographic correspondence?

2 Low energy limit of string theory

- Closed strings
- Open strings
- Branes and their sources
- Gauge theories on Dp brane

3 AdS/CFT correspondence

• Anti-de Sitter geometry - basics

Conceptual issues

Fundamental problems and why holographic correspondence?

Matter content of the Universe

String concept

• Strings are one-dimensional extended object propagating in an ambient space-time.

String concept

• Strings are one-dimensional extended object propagating in an ambient space-time.

- the direct product of a time interval and space interval is mapped to a *target space* through the map:

String concept

• Strings are one-dimensional extended object propagating in an ambient space-time.

- the direct product of a time interval and space interval is mapped to a *target space* through the map:

• Two aspects of (super)string theory:

Two theories within String theory Dynamics of Strings : { - Quantum 2d worldsheet CFT } - Target space dynamics of worldsheets } }

String worldsheet

• Conceptual issues:

• The action: the most general sigma model string action preserving the symmetries of the theory and renormalizability is

$$S = S_G + S_B + S_\Phi$$

where

• The action: the most general sigma model string action preserving the symmetries of the theory and renormalizability is

$$S = S_G + S_B + S_\Phi$$

where

 \bullet *G*-coupling

$$S_G = -\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{g} \, g^{\alpha\beta} \partial_\alpha X^\mu(\sigma) \partial_\beta X^\nu(\sigma) G_{\mu\nu}(X^\mu)$$

• The action: the most general sigma model string action preserving the symmetries of the theory and renormalizability is

$$S = S_G + S_B + S_\Phi$$

where

 \bullet *G*-coupling

$$S_G = -\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{g} \, g^{\alpha\beta} \partial_\alpha X^\mu(\sigma) \partial_\beta X^\nu(\sigma) G_{\mu\nu}(X^\mu)$$

 \bullet *B*-coupling

$$S_B = -\frac{1}{4\pi\alpha'} \int d^2\sigma \,\varepsilon^{\alpha\beta} \partial_\alpha X^\mu(\sigma) \partial_\beta X^\nu(\sigma) B_{\mu\nu}(X^\mu)$$

• The action: the most general sigma model string action preserving the symmetries of the theory and renormalizability is

$$S = S_G + S_B + S_\Phi$$

where

 \bullet *G*-coupling

$$S_G = -\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{g} \, g^{\alpha\beta} \partial_\alpha X^\mu(\sigma) \partial_\beta X^\nu(\sigma) G_{\mu\nu}(X^\mu)$$

 $\bullet \ B\text{-coupling}$

$$S_B = -\frac{1}{4\pi\alpha'} \int d^2\sigma \,\varepsilon^{\alpha\beta} \partial_\alpha X^\mu(\sigma) \partial_\beta X^\nu(\sigma) B_{\mu\nu}(X^\mu)$$

• Φ -coupling

$$S_{\Phi} = -\frac{1}{4\pi} \int d^2 \sigma \sqrt{g} \, \Phi(X^{\mu}) R^{(2)}.$$

Requirements: the fluctuations have to respect string theory invariances:

• 2d reparametrization invariance

Requirements: the fluctuations have to respect string theory invariances:

- 2d reparametrization invariance
- target space Lorentz invariance

Requirements: the fluctuations have to respect string theory invariances:

- 2d reparametrization invariance
- target space Lorentz invariance
- Weyl invariance

Requirements: the fluctuations have to respect string theory invariances:

- 2d reparametrization invariance
- target space Lorentz invariance
- Weyl invariance

Requirements: the fluctuations have to respect string theory invariances:

- 2d reparametrization invariance
- target space Lorentz invariance
- Weyl invariance
- The energy-momentum tensor is:

$$T_{\alpha\beta} = \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} - \frac{1}{2} \eta_{\alpha\beta} \partial^{\rho} X^{\sigma} \partial_{\rho} X_{\sigma} = 0.$$

• The conservation conditions

$$\partial^{\alpha}T_{\alpha\beta} = 0, \quad , T^{\alpha}{}_{\alpha} = 0.$$

Define $\Theta(z) = T^{00} + T^{01}$ and $\overline{\Theta}(\overline{z}) = T^{00} - T^{01}$. The algebra closed by $\Theta(z)$ is the so-called Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}, \quad \Theta(z) = \sum_n \frac{L_n}{z^{n+2}}.$$

• Requiring above symmetries of the σ -model string action, one ends up with the conditions ensuring the vanishing of the corresponding β -functions:

$$\begin{split} \beta^{G}_{\mu\nu} : & R_{\mu\nu} - \frac{1}{4} H_{\mu\sigma\lambda} H^{\sigma\lambda}_{\nu} + 3D_{\mu} \partial_{\nu} \Phi = 0, \\ \beta^{B}_{\mu\nu} : & -\frac{1}{2} D^{\sigma} H_{\sigma\mu\nu} + H_{\sigma\mu\nu} D^{\sigma} \Phi = 0, \\ \beta^{\Phi} : & \frac{1}{6} \left[d - 10 \right] - \frac{\alpha'}{2} \left[D^{2} \Phi - 2(\nabla \Phi)^{2} - \frac{1}{12} H^{2} \right] = 0. \end{split}$$

• Requiring above symmetries of the σ -model string action, one ends up with the conditions ensuring the vanishing of the corresponding β -functions:

$$\begin{split} \beta^{G}_{\mu\nu} : & R_{\mu\nu} - \frac{1}{4} H_{\mu\sigma\lambda} H^{\sigma\lambda}_{\nu} + 3D_{\mu} \partial_{\nu} \Phi = 0, \\ \beta^{B}_{\mu\nu} : & -\frac{1}{2} D^{\sigma} H_{\sigma\mu\nu} + H_{\sigma\mu\nu} D^{\sigma} \Phi = 0, \\ \beta^{\Phi} : & \frac{1}{6} \left[d - 10 \right] - \frac{\alpha'}{2} \left[D^{2} \Phi - 2(\nabla \Phi)^{2} - \frac{1}{12} H^{2} \right] = 0. \end{split}$$

The effective 10d action from closed strings

$$S = \frac{1}{2\kappa} \int d^{10}X \sqrt{|G|} e^{-2\Phi} \left(R + 4(\partial\Phi)^2 - \frac{1}{12}H^2 \right)$$

 \surd should be understood as a universal one, i.e. any superstring background must satisfy the above equations

 $\sqrt{}$ the equations of motion following from this action coincide with the conditions ensuring vanishing of the β -functions.

Open strings

 adding open string sector
 In the case of boundaries of the world sheet one can write the action as

$$S = \frac{1}{1\pi\alpha'} \left(\int_{\Sigma} d^2 \sigma \frac{1}{2} (\partial_{\alpha} X_{\mu} \partial^{\alpha} X^{\mu} + \varepsilon^{\alpha\beta} B_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}) + \int_{\partial \Sigma} d\sigma^1 A_{\mu} \partial_1 X^{\mu} \right)$$

Open strings

 adding open string sector
 In the case of boundaries of the world sheet one can write the action as

$$S = \frac{1}{1\pi\alpha'} \left(\int_{\Sigma} d^2 \sigma \frac{1}{2} (\partial_{\alpha} X_{\mu} \partial^{\alpha} X^{\mu} + \varepsilon^{\alpha\beta} B_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}) + \int_{\partial \Sigma} d\sigma^1 A_{\mu} \partial_1 X^{\mu} \right)$$

• boundary conditions:

$$(\mathbf{NN}): \ \partial_{\sigma} X^{\mu}_{|\sigma=0,\pi} = 0 \implies$$
$$X^{\mu}(\tau,\sigma) = q^{\mu} + 2\alpha' p^{\mu} \tau + i\sqrt{2\alpha'} \sum_{n \neq 0} \frac{1}{n} \alpha^{\mu}_{n} \cos n\sigma e^{-in\tau}$$

$$(\mathbf{DD}): \ X^{\mu}_{|\sigma=0} = q^{\mu}_{i}, \ X^{\mu}_{|\sigma=\pi} = q^{\mu}_{f} \implies X^{\mu}(\tau,\sigma) = q^{\mu}_{i} + \frac{1}{\pi}(q^{\mu}_{f} - q^{\mu}_{i}) + \sum_{n \neq 0} \frac{1}{n}\alpha^{\mu}_{n} \cos n\sigma e^{-in\tau}$$

$$(\mathbf{DD}): \ X^{\mu}_{|\sigma=0} = q^{\mu}_i, \ X^{\mu}_{|\sigma=\pi} = q^{\mu}_f \implies \\ X^{\mu}(\tau,\sigma) = q^{\mu}_i + \frac{1}{\pi}(q^{\mu}_f - q^{\mu}_i) + \sum_{n \neq 0} \frac{1}{n} \alpha^{\mu}_n \cos n\sigma e^{-in\tau}$$

$$\begin{aligned} (\mathbf{ND}): \ \partial_{\sigma} X^{\mu}_{|\sigma=0} &= 0, \ X^{\mu}_{|\sigma=\pi} = q^{\mu}_{f} \implies \\ X^{\mu}(\tau,\sigma) &= q^{\mu}_{f} + i\sqrt{2\alpha'} \sum_{n \in \mathbb{Z} + 1/2} \frac{1}{n} \alpha^{\mu}_{n} \cos n\sigma e^{-in\tau} \end{aligned}$$

$$(\mathbf{DD}): \ X^{\mu}_{|\sigma=0} = q^{\mu}_i, \ X^{\mu}_{|\sigma=\pi} = q^{\mu}_f \implies \\ X^{\mu}(\tau,\sigma) = q^{\mu}_i + \frac{1}{\pi}(q^{\mu}_f - q^{\mu}_i) + \sum_{n \neq 0} \frac{1}{n} \alpha^{\mu}_n \cos n\sigma e^{-in\tau}$$

$$\begin{aligned} (\mathbf{ND}): \ \partial_{\sigma} X^{\mu}_{|\sigma=0} &= 0, \ X^{\mu}_{|\sigma=\pi} = q^{\mu}_{f} \implies \\ X^{\mu}(\tau,\sigma) &= q^{\mu}_{f} + i\sqrt{2\alpha'} \sum_{n \in \mathbb{Z} + 1/2} \frac{1}{n} \alpha^{\mu}_{n} \cos n\sigma e^{-in\tau} \end{aligned}$$

expanding the above action we get model dependent terms

$$S_{open}^{II} = -\frac{1}{2\kappa^2} \int d^{10}x \sum_p \frac{1}{2(p+2)!} F_{p+2}^2,$$

where F_{p+2} is the field strength of a p+1 form gauge field. The couplings A_{μ} get promoted to gauge fields on the subspace where string endpoints live.

Brane degrees of freedom and effective spacetime geometry

Brane degrees of freedom and effective spacetime geometry

• Dirichlet boundary conditions: determine a subspace called D-brane

Brane degrees of freedom and effective spacetime geometry

- Dirichlet boundary conditions: determine a subspace called D-brane
- Stack of N parallel D branes

Figure: The degrees of freedom N parallel D-branes.

Effective open string action sources

type		form	el. source	mag. source
IIA	10d N=2 SUSY	$F_{[2]}$	D0	D6
	non-chiral			
IIA	10d N=2 SUSY	$F_{[4]}$	D2	D4
	non-chiral			
IIB	10d N=2 SUSY	$F_{[1]}$	D(-1)	D7
	chiral			
IIB	10d N=2 SUSY	$F_{[3]}$	D1	D5
	chiral			
IIB	10d N=2 SUSY	$F_{[5]}$	D3	D3
	chiral			

Table: Field strengths and sources in type II strings

IIA: two gravitini moving in opposite directions on the closed string world sheet, opposite chiralities under the 10d Lorentz group: a non-chiral theory. **IIB**: the gravitini have the same chiralities under 10d Lorentz group: chiral theory \rightarrow The main conclusion one can draw is that the (p + 1)-dimensional world-volume serves as source of (p + 2)-form field $F_{[p+2]}$.

Gauge theories on Dp brane

$$\begin{split} S_{Dp} &= S_{DBI} + S_{WZ} \,, \\ S_{DBI} &= -T_p \int_{Dp} d^{p+1} \xi \, \mathsf{STr} \sqrt{-\det\left(\mathcal{P}_{ab}[G_{\mu\nu} + B_{\mu\nu}] + 2\pi\alpha' F_{ab}\right)} \,, \\ S_{WZ} &= T_p \int_{Dp} \sum_i \mathsf{STr} \, \mathcal{P}[C_{(i)}] \wedge e^{\mathcal{P}[B] + 2\pi\alpha' F} \,, \end{split}$$

where T_p is the brane tension.

$$T_p = \frac{1}{g_S (2\pi)^p \alpha'^{(p+1)/2}} \,.$$

The pull-back of the background metric $G_{\mu\nu}$ and Kalb-Ramond-field $B_{\mu\nu}$ is denoted by \mathcal{P} . STr is the symmetrized trace.

• Expand the brane action and obtain the leading contribution

$$S = T_p \int d^{p+1} \xi \sqrt{g} e^{-\phi} (2\pi\alpha')^2 \frac{1}{2} \operatorname{tr} \left(F_{\alpha\beta} F^{\alpha\beta} \right) + T_p \int \sum_r C^{(r)} \wedge \operatorname{tr} e^{2\pi\alpha' F} + \cdots, \quad (1)$$

where we have not written terms involving fermions and scalars. This action is the sum of

- a Yang-Mills term,
- a Wess-Zumino term,
- an infinite number of corrections at higher orders in α' indicated by \cdots in (1)

- The string endpoints on the same D_p branes transform under adjoint representation of the gauge group. The large number of these branes gives the background geometry.
- The string endpoints ending on different $D_p D_{p'}$ branes transform in the fundamental. This is the way we introduce flavors in the theory.

Example: D3-brane

The solution for the D3 branes can be obtained from the above general solutions.

$$S = \frac{1}{2\kappa^2} \int_{M} d^{10} \mathcal{L}_{(10)} + \int_{\Sigma} d^4 z \mathcal{L}_{D3},$$
(2)

where we omitted possible interactions.

The explicit form of the D3-brane solution is

$$D3\text{-brane} = \begin{cases} ds^2 = H^{-\frac{1}{2}} dx_{(4)}^2 + H^{\frac{1}{2}} \left(dy^2 + y^2 d\Omega_{(5)}^2 \right), \\ H(y) = 1 + \left(\frac{R}{y}\right)^4, \\ F_{(5)} = d^4x \wedge dH^{-1} + \star d^4x \wedge dH^{-1}, \\ e^{\Phi} = g_s, \quad R^4 = 4\pi g_s N_c(\alpha')^2 \end{cases}$$
(3)

• Large N brane limit converts evectively the flat spacetime + N D3-branes into $AdS_5 \times S^5$ spacetime.

Cartoons for AdS/CFT correspondence

The left diagram showes how AdS/CFT correspondence is obtained. Large number of D3-branes bends the spacetime producing $AdS_5 \times S^5$.

The initial idea: (open) strings connect quark and antiquark. In holographic correspondence elementary and composite particles are understood in the sense of the picture above.

SUSY from background

• What is the role of the 5D Einstein space X_5 ?

SUSY from background

• What is the role of the 5D Einstein space X_5 ?

• Bosonic symmetry from AdS_d : SO(d, 2) - the conformal group in d dimensions;

SUSY from background

• What is the role of the 5D Einstein space X_5 ?

• Bosonic symmetry from AdS_d : SO(d, 2) - the conformal group in d dimensions;

• The isometries of $X^5 \to R$ -symmetry; for $S^5 \cong SO(6) \cong SU(4)$
SUSY from background

• What is the role of the 5D Einstein space X_5 ?

- Bosonic symmetry from AdS_d : SO(d, 2) the conformal group in d dimensions;
- The isometries of $X^5 \to R$ -symmetry; for $S^5 \cong SO(6) \cong SU(4)$
- (Super-)Symmetry of $AdS_5 \times S^5 \rightarrow SU(2,2|4)$

• In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.

• In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- $\bullet\,$ The geometry becomes that of $AdS_5\times S^5$

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5\times S^5$

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5 \times S^5$
- the conjecture is:

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5\times S^5$
- the conjecture is:

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5\times S^5$
- the conjecture is:

```
Type IIB Super-
string on AdS_5 \times S^5 background
+
Type IIB Super-
Gravity in D=1+9
spacetime
```

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5\times S^5$
- the conjecture is:

Type **IIB** Super-
string on
$$AdS_5 \times S^5$$
 background
+
Type **IIB** Super-
Gravity in D=1+9
spacetime

$$\mathcal{N} = 4 \text{ SU}(N_c)$$

Supersymmetric
Yang-Mills
+
Type **IIB** Super-
Gravity in D=1+9
spacetime

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5\times S^5$
- the conjecture is:

- In the near-horizon limit, $y/R \rightarrow 0 \Rightarrow$ decoupling.
- The geometry becomes that of $AdS_5\times S^5$
- the conjecture is:

AdS/dS spaces: basics

• Start with n-dimensional sphere defined by the rotational SO(n+1)

$$S^{n}: \quad X_{1}^{2} + X_{2}^{2} + \dots + X_{n+1}^{2} = R^{2}.$$
 (4)

• $\exists n(n+1)/2$ Killing vectors leaving the sphere invariant

$$J_{ij} = X_i \partial_j - X_j \partial_i.$$
⁽⁵⁾

AdS/dS spaces: basics

 $\bullet\,$ Start with n-dimensional sphere defined by the rotational SO(n+1)

$$S^{n}: \quad X_{1}^{2} + X_{2}^{2} + \dots + X_{n+1}^{2} = R^{2}.$$
 (4)

• $\exists \ n(n+1)/2$ Killing vectors leaving the sphere invariant

$$J_{ij} = X_i \partial_j - X_j \partial_i.$$
⁽⁵⁾

• Generalization: change the sign of the n+1-th coordinate ($X_{n+1} \equiv U$)

$$X_1^2 + X_2^2 + \dots + X_n^2 - U^2 = -1.$$
 (6)

n(n+1)/2 vectors leave the hyperboloid invariant, but n independent

$$J_{iU} = X_i \partial_U + U \partial_i, \qquad i = 1, \dots, n.$$
(7)

AdS/dS spaces: basics

 $\bullet\,$ Start with n-dimensional sphere defined by the rotational SO(n+1)

$$S^{n}: \quad X_{1}^{2} + X_{2}^{2} + \dots + X_{n+1}^{2} = R^{2}.$$
 (4)

• $\exists \ n(n+1)/2$ Killing vectors leaving the sphere invariant

$$J_{ij} = X_i \partial_j - X_j \partial_i.$$
⁽⁵⁾

• Generalization: change the sign of the n+1-th coordinate ($X_{n+1} \equiv U$)

$$X_1^2 + X_2^2 + \dots + X_n^2 - U^2 = -1.$$
 (6)

n(n+1)/2 vectors leave the hyperboloid invariant, but n independent

$$J_{iU} = X_i \partial_U + U \partial_i, \qquad i = 1, \dots, n.$$
(7)

 Let us change the sing in the metric of the embedding space, i.e. let us pass to Minkowski target space

$$ds^{2} = dX_{1}^{2} + \dots + dX_{n}^{2} - dU^{2}.$$
(8)

This metric is left invariant by all n(n+1)/2 vectors! The isometry group becomes SO(n, 1), i.e. the Lorentz group.

We define hyperbolic space \mathbf{H}^n as the upper sheet of such a hyperboloid.

• Consider a one sheeted hyperboloid embedded in Minkowski space

$$X_1^2 + \dots + X_n^2 - X_{n+1}^2 = 1.$$
 (9)

The space we obtain is a space with a Lorentzian metric of constant curvature and it is known under the name *de Sitter space*, dS^n .

We define hyperbolic space \mathbf{H}^n as the upper sheet of such a hyperboloid.

• Consider a one sheeted hyperboloid embedded in Minkowski space

$$X_1^2 + \dots + X_n^2 - X_{n+1}^2 = 1.$$
 (9)

The space we obtain is a space with a Lorentzian metric of constant curvature and it is known under the name *de Sitter space*, dS^n .

• Consider the quadric

$$X_1^2 + \dots + X_n^2 - X_{n-1}^2 - U^2 - V^2 = -1,$$
 (10)

embedded in a flat n + 1 dimensional space with the metric

$$ds^{2} = dX_{1}^{2} + \dots + dX_{n-1}^{2} - dU^{2} - dV^{2}.$$
 (11)

The space we obtain is a space with a Lorentzian metric of constant curvature and it is known under the name *Anti-de Sitter space*, AdSⁿ.

We define hyperbolic space \mathbf{H}^n as the upper sheet of such a hyperboloid.

• Consider a one sheeted hyperboloid embedded in Minkowski space

$$X_1^2 + \dots + X_n^2 - X_{n+1}^2 = 1.$$
 (9)

The space we obtain is a space with a Lorentzian metric of constant curvature and it is known under the name *de Sitter space*, dS^n .

• Consider the quadric

$$X_1^2 + \dots + X_n^2 - X_{n-1}^2 - U^2 - V^2 = -1,$$
 (10)

embedded in a flat n + 1 dimensional space with the metric

$$ds^{2} = dX_{1}^{2} + \dots + dX_{n-1}^{2} - dU^{2} - dV^{2}.$$
 (11)

The space we obtain is a space with a Lorentzian metric of constant curvature and it is known under the name *Anti-de Sitter space*, AdSⁿ. • dSⁿ space has space-like curves while AdSⁿ has time-like curves going around the hyperboloid.

- The topology of the two spaces
 - The topology of AdS^n is $R^{n-1} \otimes S^1$.
 - The topology of dS^n is $S^{n-1} \otimes R^1$.

$$ds^{2} = \frac{1}{x_{0}^{2}} \left(dx^{0} + d\vec{x}^{2} \right), \quad ds^{2}_{AdS} = L^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}}.$$
 (12)

$$ds^{2} = \frac{1}{x_{0}^{2}} \left(dx^{0} + d\vec{x}^{2} \right), \quad ds^{2}_{AdS} = L^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}}.$$
 (12)

• the vielbein and the corresponding spin connection are given by:

$$e_a^{\mu} = \frac{\delta_{\mu}^a}{x^0}; \quad \omega_i^{0j} = -\omega_i^{j0} = \frac{\delta_i^j}{x^0}; \quad a = 0, \dots d$$
 (13)

$$ds^{2} = \frac{1}{x_{0}^{2}} \left(dx^{0} + d\vec{x}^{2} \right), \quad ds^{2}_{AdS} = L^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}}.$$
 (12)

• the vielbein and the corresponding spin connection are given by:

$$e_a^{\mu} = \frac{\delta_{\mu}^a}{x^0}; \quad \omega_i^{0j} = -\omega_i^{j0} = \frac{\delta_i^j}{x^0}; \quad a = 0, \dots d$$
 (13)

Christoffel symbols and spin connection coefficients

$$\Gamma_{ii}^{z} = \frac{1}{z} = -\Gamma_{tt}^{z} = -\Gamma_{zz}^{z}, \quad \omega_{z}^{i} = \frac{1}{z} dx^{i} \eta^{ii} \quad \text{no sum on } i, \qquad (14)$$

$$ds^{2} = \frac{1}{x_{0}^{2}} \left(dx^{0} + d\vec{x}^{2} \right), \quad ds^{2}_{AdS} = L^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}}.$$
 (12)

• the vielbein and the corresponding spin connection are given by:

$$e_a^{\mu} = \frac{\delta_{\mu}^a}{x^0}; \quad \omega_i^{0j} = -\omega_i^{j0} = \frac{\delta_i^j}{x^0}; \quad a = 0, \dots d$$
 (13)

Christoffel symbols and spin connection coefficients

$$\Gamma_{ii}^{z} = \frac{1}{z} = -\Gamma_{tt}^{z} = -\Gamma_{zz}^{z}, \quad \omega_{z}^{\ i} = \frac{1}{z} dx^{i} \eta^{ii} \quad \text{no sum on } i, \qquad (14)$$

• Riemann tensor ($\mu
eq
u$, no sum), Ricci and the scalar curvatures

$$R_{\mu\nu\mu}{}^{\nu} = \eta_{\mu\mu}\eta_{\nu}{}^{\nu}\frac{1}{z^2}, \quad R_{\mu\nu} = (d-1)\frac{1}{z^2}\eta_{\mu\nu}, \quad R = \frac{d(d-1)}{L^2}.$$
 (15)

$$ds^{2} = \frac{1}{x_{0}^{2}} \left(dx^{0} + d\vec{x}^{2} \right), \quad ds^{2}_{AdS} = L^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}}.$$
 (12)

• the vielbein and the corresponding spin connection are given by:

$$e_a^{\mu} = \frac{\delta_{\mu}^a}{x^0}; \quad \omega_i^{0j} = -\omega_i^{j0} = \frac{\delta_i^j}{x^0}; \quad a = 0, \dots d$$
 (13)

Christoffel symbols and spin connection coefficients

$$\Gamma_{ii}^{z} = \frac{1}{z} = -\Gamma_{tt}^{z} = -\Gamma_{zz}^{z}, \quad \omega_{z}^{\ i} = \frac{1}{z} dx^{i} \eta^{ii} \quad \text{no sum on } i, \qquad (14)$$

• Riemann tensor ($\mu
eq
u$, no sum), Ricci and the scalar curvatures

$$R_{\mu\nu\mu}{}^{\nu} = \eta_{\mu\mu}\eta_{\nu}{}^{\nu}\frac{1}{z^2}, \quad R_{\mu\nu} = (d-1)\frac{1}{z^2}\eta_{\mu\nu}, \quad R = \frac{d(d-1)}{L^2}.$$
 (15)

Dirac operator

$$D_{\nu} = \partial_{\nu} + \frac{1}{2x^{0}}\gamma_{0\nu}; \quad \Gamma^{\mu}D_{\mu} = x_{0}\gamma^{0}\partial_{0} + x_{0}\vec{\gamma}.\vec{\nabla} - \frac{d}{2}\gamma^{0}$$
(16)

The main ingredients

• Consider a spacetime M supplied with a boundary $\partial M = \Sigma$.

- Consider a spacetime M supplied with a boundary $\partial M = \Sigma$.
- The fields in the bulk we denote by Φ_i (the index stands for arbitrary tensorial structure) while the fields on the boundary are ϕ_k .

- Consider a spacetime M supplied with a boundary $\partial M = \Sigma$.
- The fields in the bulk we denote by Φ_i (the index stands for arbitrary tensorial structure) while the fields on the boundary are ϕ_k .
- The metric of M is $g_{\mu\nu}$ while the induced metric on the boundary ∂M is $g_{|\partial M}=\gamma.$

- Consider a spacetime M supplied with a boundary $\partial M = \Sigma$.
- The fields in the bulk we denote by Φ_i (the index stands for arbitrary tensorial structure) while the fields on the boundary are ϕ_k .
- The metric of M is $g_{\mu\nu}$ while the induced metric on the boundary ∂M is $g_{|\partial M}=\gamma.$
- Consider a radial slice of the spacetime Σ_ρ at fixed $\rho.$ The fields on this slice will be also denoted by $\phi_k.$

The main ingredients

- Consider a spacetime M supplied with a boundary $\partial M = \Sigma$.
- The fields in the bulk we denote by Φ_i (the index stands for arbitrary tensorial structure) while the fields on the boundary are ϕ_k .
- The metric of M is $g_{\mu\nu}$ while the induced metric on the boundary ∂M is $g_{|\partial M}=\gamma.$
- Consider a radial slice of the spacetime Σ_ρ at fixed $\rho.$ The fields on this slice will be also denoted by $\phi_k.$
- $\bullet\,$ At given slice Σ_{ρ} consider the amplitude

$$\Psi_{\Sigma_{\rho}}[\phi_i] = \int_{\Phi_i \mid \Sigma_{\rho} = \phi_i} D\Phi_i e^{iS_{B,M}(\Phi_i)}, \tag{17}$$

where $S_{B,M}$ is the bulk action and the integral is evaluated with Dirichlet boundary conditions for the fields on Σ_{ρ} .

The main ingredients

- Consider a spacetime M supplied with a boundary $\partial M = \Sigma$.
- The fields in the bulk we denote by Φ_i (the index stands for arbitrary tensorial structure) while the fields on the boundary are ϕ_k .
- The metric of M is $g_{\mu\nu}$ while the induced metric on the boundary ∂M is $g_{|\partial M}=\gamma.$
- Consider a radial slice of the spacetime Σ_ρ at fixed $\rho.$ The fields on this slice will be also denoted by $\phi_k.$
- $\bullet\,$ At given slice Σ_{ρ} consider the amplitude

$$\Psi_{\Sigma_{\rho}}[\phi_i] = \int_{\Phi_i \mid \Sigma_{\rho} = \phi_i} D\Phi_i e^{iS_{B,M}(\Phi_i)}, \tag{17}$$

where $S_{B,M}$ is the bulk action and the integral is evaluated with Dirichlet boundary conditions for the fields on Σ_{ρ} .

• The quantum Hamilton-Jacobi functional

$$S(\phi_i) = \Gamma(\Phi_i)|_{\frac{\delta\Gamma}{\delta\Phi_i} = 0, \, \Phi_i|_{\partial M} = \phi_i}.$$
(18)

$$\gamma \to \rho^{-2}\gamma \implies \phi_i \to \rho^{d-\Delta_i}\phi_i.$$
 (19)

The quantity Δ_i is associated with the conformal dimension of a primary operator \mathcal{O}_i on the CFT side of the correspondence (actually it is coupled to it).

$$\gamma \to \rho^{-2}\gamma \implies \phi_i \to \rho^{d-\Delta_i}\phi_i.$$
 (19)

The quantity Δ_i is associated with the conformal dimension of a primary operator \mathcal{O}_i on the CFT side of the correspondence (actually it is coupled to it).

• S-matrix elements can be extracted by taking derivatives of the quantum Hamilton-Jacobi functional. Thus, one can think of $\Psi_{\Sigma_{\rho}}[\phi_i] = \int_{\Sigma_{\rho}} D\phi e^{iS(\phi_i)}$ as on-shell amplitude defining connected S-matrix elements.

$$\gamma \to \rho^{-2}\gamma \implies \phi_i \to \rho^{d-\Delta_i}\phi_i.$$
 (19)

The quantity Δ_i is associated with the conformal dimension of a primary operator \mathcal{O}_i on the CFT side of the correspondence (actually it is coupled to it).

• S-matrix elements can be extracted by taking derivatives of the quantum Hamilton-Jacobi functional. Thus, one can think of $\Psi_{\Sigma_{\rho}}[\phi_i] = \int_{\Sigma_{\rho}} D\phi e^{iS(\phi_i)}$ as on-shell amplitude defining connected S-matrix elements.

 \implies in flat space the quantum Hamilton-Jacobi functional is the generating functional of connected S-matrix elements.

$$\gamma \to \rho^{-2}\gamma \implies \phi_i \to \rho^{d-\Delta_i}\phi_i.$$
 (19)

The quantity Δ_i is associated with the conformal dimension of a primary operator \mathcal{O}_i on the CFT side of the correspondence (actually it is coupled to it).

• S-matrix elements can be extracted by taking derivatives of the quantum Hamilton-Jacobi functional. Thus, one can think of $\Psi_{\Sigma_{\rho}}[\phi_i] = \int_{\Sigma_{\rho}} D\phi e^{iS(\phi_i)}$ as on-shell amplitude defining connected S-matrix elements.

 \implies in flat space the quantum Hamilton-Jacobi functional is the generating functional of connected S-matrix elements.

• For any given CFT one can define the generating functional of connected correlation functions

$$Z_{CFT}[\phi_i] = \langle e^{\int_{\Sigma} \phi_i \mathcal{O}_i} \rangle.$$
(20)

The $\ensuremath{\mathsf{AdS}}/\ensuremath{\mathsf{CFT}}$ correspondence states the equality of

$$Z_{CFT}[\phi_i] = \Psi_{\Sigma_0}[\phi_i] \,, \tag{21}$$

where Σ_0 is the (asymptotic) boundary of the spacetime.

 \checkmark Comments

The AdS/CFT correspondence states the equality of

$$Z_{CFT}[\phi_i] = \Psi_{\Sigma_0}[\phi_i] \,, \tag{21}$$

where Σ_0 is the (asymptotic) boundary of the spacetime.

- ✓ Comments
 - In principle $\Psi_{\Sigma_{\rho}}$ represents the quantum spacetime but only trough the dependence on the boundary metric!

The AdS/CFT correspondence states the equality of

$$Z_{CFT}[\phi_i] = \Psi_{\Sigma_0}[\phi_i] \,, \tag{21}$$

where Σ_0 is the (asymptotic) boundary of the spacetime.

- ✓ Comments
 - In principle $\Psi_{\Sigma_{\rho}}$ represents the quantum spacetime but only trough the dependence on the boundary metric!
 - Changing the radial slice changes the induced metric on Σ_{ρ} ! Thus, knowing Σ_{ρ} for all ρ (i.e. all possible γ) allows to reconstruct the semi-classical spacetime!
The AdS/CFT correspondence states the equality of

$$Z_{CFT}[\phi_i] = \Psi_{\Sigma_0}[\phi_i] \,, \tag{21}$$

where Σ_0 is the (asymptotic) boundary of the spacetime.

- ✓ Comments
 - In principle $\Psi_{\Sigma_{\rho}}$ represents the quantum spacetime but only trough the dependence on the boundary metric!
 - Changing the radial slice changes the induced metric on Σ_ρ! Thus, knowing Σ_ρ for all ρ (i.e. all possible γ) allows to reconstruct the semi-classical spacetime!
 - On the other hand, assuming the correspondence, the variation of the boundary means moving the radial slice in the bulk!

• The correspondence states

$$Z_{CFT}[\phi_0] = \int D\mathcal{O}e^{iS_{\text{cft}} + i\int d^d x \,\mathcal{O}(x)\phi_0(x)} = \int_{\Phi_{|_{=\phi_0}}} D\Phi e^{iS_{\text{ads}}} = \Psi_{\Sigma_{\rho}}[\phi_0]$$

Practically

$$\langle \mathcal{O}_{\Delta}(x_1) \dots \mathcal{O}_{\Delta}(x_n) \rangle_{\text{CFT,conn}} = (-1)^n \frac{\delta^n \log \Psi_{\Sigma_{\rho}}[\phi_0]}{\delta \phi_0 \dots \delta \phi_0} \Big|_{\phi_0 = 0}.$$
 (22)

Example 1: N=4 SYM

Example 1: N=4 SYM

$\mathcal{N}=4$ field content

$\mathcal{N} = 4$ field content

The $\mathcal{N} = 4$ vector multiplet consists of:

- the gauge field A_{μ} ,
- four Weyl spinors λ^A_α , $A=1,\ldots,4$

- six real scalars X_m , $m = 4, \ldots, 9$ corresponding to the six transverse directions to the D3 branes.

It is convenient to represent the scalars as a self-dual antisymmetric tensor X^{AB} of the *R*-symmetry group $SU(4)_R \cong Spin(6)$,

$$(X^{AB})^{\dagger} = \bar{X}_{AB} \equiv \frac{1}{2} \epsilon_{ABCD} X^{CD} .$$
⁽²³⁾

The explicit change of variables is

$$X^{AB} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & X_8 + iX_9 & X_6 + iX_7 & X_4 + iX_5 \\ \frac{-X_8 - iX_9 & 0 & X_4 - iX_5 & -X_6 + iX_7}{-X_6 - iX_7 & -X_4 + iX_5 & 0 & X_8 - iX_9} \\ \frac{-X_6 - iX_7 & -X_4 + iX_5 & 0 & X_8 - iX_9}{-X_4 - iX_5 & X_6 - iX_7 & -X_8 + iX_9 & 0} \end{pmatrix}$$

 \Longrightarrow In components (in going from superspace to components, we redefine the coupling, $g_{\rm superspace}=\sqrt{2}g_{\rm components}$, to recover the usual normalization),

$$\mathcal{L}_{\mathcal{N}=4} = \operatorname{Tr}\left[-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - i\bar{\lambda}_A\bar{\sigma}^\mu D_\mu\lambda^A - \frac{1}{2}D^\mu\bar{X}_{AB}D_\mu X^{AB}\right]$$

$$+ i\sqrt{2}g X^{AB} \bar{\lambda}_A \bar{\lambda}_B - i\sqrt{2}g \bar{X}_{AB} \lambda^A \lambda^B - \frac{g^2}{4} [X^{AB}, X^{CD}] [\bar{X}_{CD}, \bar{X}_{AB}] \bigg],$$
(24)

where $A,B=1,\ldots,4.$ The scalars X^{AB} are related to the three complex scalars ϕ^a as

$$X^{AB} = \begin{pmatrix} 0 & \phi^3 & \phi^2 & \phi^1 \\ -\phi^3 & 0 & \phi_1^* & -\phi_2^* \\ \hline -\phi^2 & -\phi_1^* & 0 & \phi_3^* \\ -\phi^1 & \phi_2^* & -\phi_3^* & 0 \end{pmatrix}$$
(25)

and obey the self-duality constraint.

Example 2: N=2 SYM

The stack of branes: $N_c D3$ branes forming the geometry;. The background in the $N_c \rightarrow \infty$ limit approaches $AdS_5 \times S^5$. To introduce flavors we add $N_F D7$ branes according to the Table 3

Figure: Embedding of N_F D7 branes in the background of N_c D3.

The $AdS_5 \times S^5$ background is given by

$$ds^{2} = H^{-1/2}(r)\eta_{\mu\nu}dx^{\mu}dx^{\nu} + H^{1/2}(r)(d\vec{y}^{2} + d\vec{z}^{2}),$$

$$H(r) = \frac{L^{4}}{r^{4}}, \quad r^{2} = \vec{y}^{2} + \vec{z}^{2}, \quad \vec{y}^{2} = \sum_{m=4}^{7} y^{m}y^{m}, \quad \vec{z}^{2} = (z^{8})^{2} + (z^{9})^{2}$$

$$C_{0123}^{(4)} = H^{-1}, \quad e^{\phi} = e^{\phi_{\infty}} = g_{s}, \quad L^{4} = 4\pi g_{s}N_{c}(\alpha')^{2}.$$

$\mathcal{N} = 2$ field content

Each $\mathcal{N}=2$ flavor hyper multiplet consists of two Weyl spinors and two complex scalars,

$$\begin{array}{ccc}
\psi_{\alpha}^{i} & \\
q^{i} & (\tilde{q}_{i})^{\dagger} \\
& \left(\tilde{\psi}_{i\,\alpha}\right)^{\dagger}
\end{array} (27)$$

Here $i = 1, \ldots, N_f$ is the flavor index. The scalars form an $SU(2)_R$ doublet,

$$Q^{\mathcal{I}} \equiv \begin{pmatrix} q \\ \tilde{q}^{\dagger} \end{pmatrix}, \quad \mathcal{I} = 1, 2.$$
(28)

The flavor hyper multiplets are minimally coupled to the $\mathcal{N} = 2$ vector multiplet that sits inside the $\mathcal{N} = 4$ vector multiplet. This coupling breaks the R-symmetry $SU(4)_R$ to $SU(2)_L \times SU(2)_R \times U(1)_R$, where $SU(2)_R \times U(1)_R$ is the R-symmetry of the resulting $\mathcal{N} = 2$ theory. There is a certain arbitrariness in the choice of embedding $SU(2)_L \times SU(2)_R \times U(1)_R \subset SU(4)_R \cong Spin(6)$.

⇒ This corresponds to the choice of orientation of the whole stack of D7 branes in the 456789 directions (we need to pick an $\mathbb{R}^4 \subset \mathbb{R}^6$). For example if we choose the configuration of Figure, we identify $SU(2)_L \times SU(2)_R \cong SO(4)$ with rotations in the 4567 directions and $U(1)_R \cong SO(2)$ with a rotation on the 89 plane. A short calculation using our parametrization of the scalars (24) shows that this corresponds to the following natural embedding of $SU(2)_L \times SU(2)_R \times U(1)_R \subset SU(4)_R$:

Of course, any other choice would be equivalent, so long as it is performed simultaneously for all D7 branes.

 \implies With the choice (29), the $\mathcal{N}=4$ vector multiplet splits into the $\mathcal{N}=2$ vector multiplet

and the $\mathcal{N}=2$ hyper multiplet

$$\begin{array}{ccc} \lambda_{\alpha}^{3} & & \\ \frac{X_{4}+iX_{5}}{\sqrt{2}} & & \frac{X_{6}+iX_{7}}{\sqrt{2}} \\ & \lambda_{\alpha}^{4} \end{array}$$

$$(31)$$

The two Weyl spinors in the vector multiplet form an $SU(2)_R$ doublet

$$\Lambda_{\mathcal{I}} \equiv \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \quad \mathcal{I} = 1, 2, \qquad (32)$$

while the two spinors in the hyper multiplet form an $SU(2)_L$ doublet,

$$\hat{\Lambda}_{\hat{\mathcal{I}}} \equiv \begin{pmatrix} \lambda_3 \\ \lambda_4 \end{pmatrix}, \quad \hat{\mathcal{I}} = 1, 2.$$
(33)

We use $\mathcal{I}, \mathcal{J} \cdots = 1, 2$ for $SU(2)_R$ indices and $\hat{\mathcal{I}}, \hat{\mathcal{J}} \cdots = 1, 2$ for $SU(2)_L$ indices. To make the $SU(2)_L \times SU(2)_R$ quantum numbers of the scalars more transparent we also introduce the 2×2 complex matrix $\mathcal{X}_{\hat{\mathcal{II}}}$, defined as the off-diagonal block of X^{AB} ,

$$\mathcal{X}^{\hat{\mathcal{I}I}} = \begin{pmatrix} X_6 + iX_7 & X_4 + iX_5 \\ X_4 - iX_5 & -X_6 + iX_7 \end{pmatrix}.$$
 (34)

Note that $\mathcal{X}^{\hat{\mathcal{I}}\mathcal{I}}$ obeys the reality condition

$$\left(\mathcal{X}^{\hat{\mathcal{I}}\mathcal{I}}\right)^* = -\mathcal{X}_{\hat{\mathcal{I}}\mathcal{I}} = -\epsilon_{\hat{\mathcal{I}}\hat{\mathcal{J}}}\epsilon_{\mathcal{I}\mathcal{J}}\mathcal{X}^{\hat{\mathcal{I}}\mathcal{J}}.$$
(35)

We summarize in the following table the transformation properties of the fields:

	SU(N)	$SU(N_f)$	$SU(2)_L$	$SU(2)_R$	$U(1)_R$
A_{μ}	Adj	1	1	1	0
X^{12}	Adj	1	1	1	+2
$\mathcal{X}^{\mathcal{I}\hat{\mathcal{I}}}$	Adj	1	2	2	0
$\Lambda_{\mathcal{I}}$	Adj	1	1	2	+1
$\hat{\Lambda}_{\hat{\mathcal{T}}}$	Adj	1	2	1	-1
$Q^{\widetilde{I}}$			1	2	0
ψ			1	1	-1
$ ilde{\psi}$			1	1	+1

Table: Quantum numbers of the fields.

We summarize in the following table the transformation properties of the fields:

	SU(N)	$SU(N_f)$	$SU(2)_L$	$SU(2)_R$	$U(1)_R$
A_{μ}	Adj	1	1	1	0
X^{12}	Adj	1	1	1	+2
$\mathcal{X}^{\mathcal{I}\hat{\mathcal{I}}}$	Adj	1	2	2	0
$\Lambda_{\mathcal{I}}$	Adj	1	1	2	+1
$\hat{\Lambda}_{\hat{\mathcal{I}}}$	Adj	1	2	1	-1
$Q^{\widetilde{I}}$			1	2	0
ψ			1	1	-1
$ ilde{\psi}$			1	1	+1

Table: Quantum numbers of the fields.

In superfield language the Lagrangian reads

$$\begin{aligned} \mathcal{L}_{\mathcal{N}=4} &= \mathrm{Tr} \left[\int d^4 \theta \, e^{-gV} \, \bar{\Phi}_a \, e^{gV} \, \Phi^a + \int d^2 \theta \, W^2 \right. \\ &+ \left(\frac{i \, g}{3!} \int d^2 \theta \, \epsilon_{abc} \, \Phi^a \left[\Phi^b, \, \Phi^c \right] + h.c. \right) \right] \,, \end{aligned}$$

In components (in going from superspace to components, we redefine the coupling, $g_{superspace} = \sqrt{2}g_{components}$, to recover the usual normalization),

$$\mathcal{L}_{\mathcal{N}=4} = \operatorname{Tr}\left[-\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - i\bar{\lambda}_{A}\bar{\sigma}^{\mu}D_{\mu}\lambda^{A} - \frac{1}{2}D^{\mu}\bar{X}_{AB}D_{\mu}X^{AB}\right]$$

$$+ i\sqrt{2}g X^{AB} \bar{\lambda}_A \bar{\lambda}_B - i\sqrt{2}g \bar{X}_{AB} \lambda^A \lambda^B - \frac{g^2}{4} [X^{AB}, X^{CD}] [\bar{X}_{CD}, \bar{X}_{AB}] \bigg],$$
(36)

where $A, B = 1, \ldots, 4$. The scalars X^{AB} are related to the three complex scalars ϕ^a as

$$X^{AB} = \begin{pmatrix} 0 & \phi^3 & \phi^2 & \phi^1 \\ -\phi^3 & 0 & \phi_1^* & -\phi_2^* \\ \hline -\phi^2 & -\phi_1^* & 0 & \phi_3^* \\ -\phi^1 & \phi_2^* & -\phi_3^* & 0 \end{pmatrix}$$

(37)

and obey the self-duality constraint.

• Conceptual issues:

• Conceptual issues:

 \odot If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

• Conceptual issues:

 \odot If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other! \odot If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!

• Conceptual issues:

⊙ If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!
⊙ If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!
⊙ Thus, one can think of space-time, ergo gravity as emergent phenomenon!

• Conceptual issues:

⊙ If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!
⊙ If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!

- \odot Thus, one can think of space-time, ergo gravity as emergent phenomenon!
- The first questions to ask:

• Conceptual issues:

 \odot If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

- \odot If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!
- \odot Thus, one can think of space-time, ergo gravity as emergent phenomenon!
- The first questions to ask:

 \triangleright How to match the degrees of freedom on both sides of duality and how the information from the bulk is encoded in the boundary theory ?

- Conceptual issues:
 - \odot If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!
 - \odot If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!
 - \odot Thus, one can think of space-time, ergo gravity as emergent phenomenon!
 - The first questions to ask:
 - \triangleright How to match the degrees of freedom on both sides of duality and how the information from the bulk is encoded in the boundary theory ?
 - \triangleright What duality teaches us about strongly coupled physics on both sides ?

- Conceptual issues:
 - \odot If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!
 - \odot If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!
 - \odot Thus, one can think of space-time, ergo gravity as emergent phenomenon!
 - The first questions to ask:
 - \triangleright How to match the degrees of freedom on both sides of duality and how the information from the bulk is encoded in the boundary theory ?
 - \triangleright What duality teaches us about strongly coupled physics on both sides ?
 - \triangleright Is there something beyond the conjecture that could help in studying features of quantum gravity, or what is underlying this duality ?

Next lectures will demonstrate how to approach these problems and will give simple examples of duality with focus on the field theory side.