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1 Extra dimensions and partition functions

Problem 1.1: Consider the time-independent Schrödinger equation[
− ℏ2

2m
∂2xx + V (x)− E

]
ψ(x) = 0. (1.1)

with the one-dimensional square-well potential of infinite height:

V (x) =

{
0, ifx ∈ (0, a), a > 0, & ψ(0) = 0 = ψ(a),

∞, ifx /∈ (0, a) ⇒ ψ(x) = 0.
(1.2)

Determine the wave function ψk(x) and the energy spectrum Ek, where k is the principle

quantum number.

Problem 1.2 (B. Zwiebach): Add an extra circular dimension y with a small radius R

to the square-well with (x, y) = (x, y + 2πR). Now the particle moves on a cylinder with

length a and circumference 2πR. The potential V (x, y) remains the same as in (1.2) and

is y-independent.

a) Determine ψk,l(x, y) and Ek,l. At what probing energies the effects of an extra

dimension can be observed?

Hint: The Schrödinger equation in 2d:[
− ℏ

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y)− E

]
ψ(x, y) = 0. (1.3)

b) Determine the statistical partition function Z(a,R) and show that, at high tem-

peratures (β = (kT )−1 → 0), the effects of the extra dimension are visible. Evaluate Z
in the regime ℏ2

ma2
≤ kT ≤ ℏ2

mR2 and include the leading correction due to the small extra

dimension.

2 Scalar electrodynamics

Consider a complex scalar field ϕ in D = d + 1 dimensions coupled to a U(1) gauge field,

Aµ,

Lkin = −(Dµϕ)
∗Dµϕ− 1

4
FµνF

µν , (2.1)

1



with Dµ := ∂µ − ieAµ. Determine the mass dimensions of the fields and the coupling

constant e - is the theory (classically) conformal invariant? Is the theory gauge invariant?

Write the equations of motion and the Feynman rules for the resulting theory (known as

scalar electrodynamics). Now add the term

Lλ = λ1ϕ
∗ϕ+ λ2(ϕ

∗ϕ)2 , (2.2)

where λ1,2 are real coupling constants. Is there and what is the change in the equations

of motion, Feynman rules and conformal/gauge invariance after the addition of Lλ? Draw

your favorite 1-loop Feynman diagram obeying the rules and write down its corresponding

expression with the integral over the internal momentum.

3 Classical conformal invariance

Consider the scalar field action in D-dimensions

S =

∫
dDx

(
−1

2
(∂µϕ)

2 − gϕ3 − λϕ4 − kϕ6

)
. (3.1)

Determine which of the coupling constants {g, λ, k} is allowed to be non-vanishing in a

classically conformally invariant theory for different values of D. Which are the special

values of D allowing for interacting classically conformal theories?

4 Euclidean path integral in quantum mechanics

In quantum field theory, the Euclidean path integral on a compact time direction of period

β has the interpretation of the statistical/thermal partition function Zβ if bosons are iden-

tified periodically and fermions anti-periodically. Here we change the boundary conditions

and make all fields periodic (still, bosons are commuting and fermions anti-commuting),

which corresponds to a different sort of observable partition function, a supersymmetric

index ZW also known as the Witten index.

Consider the double harmonic oscillator

H = ℏω(a†a+ b†b) , (4.1)

which can be interpreted as a coupled bosonic and fermionic oscillator with corresponding

particle numbers nb ∈ Z+ and nf ∈ {0, 1}. The eigenstates of the Hamiltonian are therefore

|nf , nb⟩ with eigenvalues (energies) ℏω(nb + nf ). Keeping in mind that the operators a, a†

are bosonic, while b, b† are fermionic, evaluate the corresponding Euclidean path integral

ZW =

∫
da†da

2πi
db†db e−βH . (4.2)
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This path integral is a way of evaluating the Witten index and has the interpretation

of counting the invariant quantity of bosonic minus fermionic states,

ZW = Tr(−1)nf e−βH . (4.3)

Based on the explicit knowledge of the spectrum of the double harmonic oscillator, show

that your result for ZW indeed matches the expectation derived from the path integral.

How does the final answer depend on β and why?

5 Euclidean conformal group

Determine the symmetry group of a D-dimensional Euclidean conformal field theory by

Wick rotating from (1, D − 1) signature of the spacetime.

6 AdS coordinates

Derive explicitly the AdS5 metric in global and Poincaré coordinates starting from the

hyperboloid

x20 + x25 −
4∑
i=1

x2i = L2 , (6.1)

with the metric

ds25 = −dx20 − dx25 +
4∑
i=1

dx2i . (6.2)

7 Scalar field in AdS

Consider the action of a real scalar field on AdS5 space,

S =

∫
d5x

√
−g

(
−1

2
(∂µϕ)

2 − 1

2
mϕ2 − λϕ3

)
, (7.1)

neglecting backreaction (light scalar approximation). Derive the equation of motion and

the Feynman rules. The scalar field ϕ is dual to an operator O in the dual conformal

field theory on the asymptotic boundary. Determine whether the four-point correlator

< OOOO > is non-vanishing by looking at the dual ϕ-correlator.

8 Scalar field on a circle

Consider the action of a real scalar field in two spacetime dimensions,

S =

∫
dt dx

(
−1

2
(∂µϕ)

2 − 1

2
λ1ϕ

2 − λ2ϕ
4

)
, (8.1)
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and assume that the spatial coordinate x parameterize a circle of length L = 2πR. Now

decompose the scalar field in terms of a Fourier sum,

ϕ(t, x) =
1√
L

∞∑
k=−∞

ϕk(t)e
ikx/R , (8.2)

where k is an integer. What condition do the ϕk satisfy?

Write the action in terms of ϕk and show that you obtain an infinite tower of harmonic

oscillators with frequencies (masses)

M2
k = λ1 +

k2

R2
. (8.3)

Write down the Feynman rules, the propagators and vertices in momentum space, for this

quantum-mechanical model. Draw the Feynman diagrams that contribute to the self-energy

(two external lines) of ϕ0 in the one-loop approximation, and evaluate the self-energy and

therefore the correction to the mass of ϕ0. Which corrections come from self-interactions

between ϕ0 and itself and which from interactions with the other fields ϕk ̸=0? Now give the

mass of ϕ0 in the two opposite limits for the circle radius, R → 0 and R → ∞. Explain the

physical meaning of the results, are they in agreement with your physical expectations?

9 Feynman rules

Consider the following set of Feynman rules (in momentum space) for the two real scalar

fields ϕ and σ and a spinorial field ψ:

• free scalar propagators

∆ϕ(k) =
1

k2 +M2 + iε
, ∆σ(k) =

1

N2
. (9.1)

• free fermion propagator

∆ψ(k) =
(−i/k +m)

k2 +m2 + iε
. (9.2)

• a three point vertex with one σ and two fermion legs (ψ and ψ̄) with coefficient

(−i g1)

• a three point vertex with two ϕ and one σ legs with coefficient (−i g2)

• a four point vertex with four ϕ legs with a factor (−i λ)

with coupling constants M,N,m, g, λ.
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• Write down the original Lagrangian that corresponds to the Feynman rules above

and derive the corresponding equations of motion for the three different fields.

• Which of the fields does not give rise to a physical particle? Pick this particular field

and integrate it out of the path integral by substituting its classical solution in the

Lagrangian. Write down the resulting new Lagrangian.

• Derive the Feynman rules for this new theory in the usual limit for small coupling

constants.

• Write down the Feynman diagrams and their corresponding expressions (without

solving the integrals) contributing to the self-energy of the fermionic field in the

one-loop approximation.

10 Scalar propagator

You are given the general expression for a full two-point correlation function of a real scalar

field ϕ

< ϕϕ >= Dϕ(p) =
1

R(p) + i I(p)
, (10.1)

for unspecified real functions R(p) and I(p) of the particle momentum p. Analyze the

propagator depending on the various possibilities for the two functions - in which cases the

excitations of the field ϕ give rise to a physical particle and is it stable or decaying with

time?

11 Gauge fixing for massive vector fields

Consider a vector field Aµ coupled to a real scalar field ϕ and a spinor field ψ in 4 spacetime

dimensions, given by the Lagrangian

L = −1

4
(∂µAν − ∂νAµ)

2 − M

2 q2
∣∣(∂µ − iqAµ)e

iqϕ/M
∣∣2 − ψ̄(/∂ − ig γµAµ +m)ψ . (11.1)

• Show that the Lagrangian is invariant under the combined gauge transformations,

Aµ → Aµ + ∂µξ ,

ϕ→ ϕ+M ξ ,

ψ → exp[igξ] ψ ,

(11.2)

where ξ(x) is an arbitrary function of space and time.

5



• Collect all fields quadratic in the fields Aµ and ϕ. Argue that the inverse propagator

takes the form of a 5×5 matrix and determine this matrix in momentum space. Does

the propagator exist? Motivate your answer in two different ways: both on the basis

of the explicit matrix and on the basis of a more general argument.

• Argue that ϕ = 0 is an admissible gauge condition. Determine now the propagator

for Aµ in this gauge. What are the physical bosonic states described by the resulting

Lagrangian? Determine the mass dimension of all the fields and coupling constants

of the theory in this gauge. Is the theory in this gauge renormalizable by power

counting or not?

• Instead of the gauge ϕ = 0 we now choose another gauge condition by adding the

following term to the original Lagrangian

Lgauge−fixing = −1

2
(λ ∂µA

µ +M λ−1ϕ)2 , (11.3)

with an arbitrary parameter λ. Calculate again the propagators for Aµ and ϕ. What

are in this case the physical bosonic states described by the resulting Lagrangian?

Determine again the mass dimensions of the fields and coupling constants of the

theory with this new gauge fixing. Is the theory in this new gauge renormalizable by

power counting or not?

• Write down the Feynman rules in the two gauges. Consider the one-loop fermion self-

energy diagrams in the two gauges on the mass shell (i.e. sandwiched with spinors

that satisfy the Dirac equation (i /p + m)u = 0 that also implies p2 + m2 = 0).

Determine the difference in the self-energy expression between the two gauges. Did

you expect the result and why?
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